Skip to main content

Advertisement

Log in

Endophytic bacteria take the challenge to improve Cu phytoextraction by sunflower

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Endophytic bacteria from roots and crude seed extracts of a Cu-tolerant population of Agrostis capillaris were inoculated to a sunflower metal-tolerant mutant line, and their influence on Cu tolerance and phytoextraction was assessed using a Cu-contaminated soil series. Ten endophytic bacterial strains isolated from surface-sterilized A. capillaris roots were mixed to prepare the root endophyte inoculant (RE). In parallel, surface-sterilized seeds of A. capillaris were crushed in MgSO4 to prepare a crude seed extract containing seed endophytes (SE). An aliquot of this seed extract was filtered at 0.2 μm to obtain a bacterial cell-free seed extract (SEF). After surface sterilization, germinated sunflower seeds were separately treated with one of five modalities: no treatment (C), immersion in MgSO4 (CMg) or SEF solutions and inoculation with RE or SE. All plants were cultivated on a Cu-contaminated soil series (13–1020 mg Cu kg−1). Cultivable RE strains were mostly members of the Pseudomonas genera, and one strain was closely related to Labrys sp. The cultivable SE strains belonged mainly to the Bacillus genera and some members of the Rhodococcus genera. The treatment effects depended on the soil Cu concentration. Both SE and SEF plants had a higher Cu tolerance in the 13–517 mg Cu kg−1 soil range as reflected by increased shoot and root DW yields compared to control plants. This was accompanied by a slight decrease in shoot Cu concentration and increase in root Cu concentration. Shoot and root DW yields were more promoted by SE than SEF in the 13–114 mg Cu kg−1 soil range, which could reflect the influence of seed-located bacterial endophytes. At intermediate soil Cu (416–818 mg Cu kg−1 soil), the RE and CMg plants had lower shoot Cu concentrations than the control, SE and SEF plants. At high total soil Cu (617–1020 mg Cu kg−1), root DW yield of RE plants slightly increased and their root Cu concentration rose by up to 1.9-fold. In terms of phytoextraction efficiency, shoot Cu removal was increased for sunflower plants inoculated with crude and bacterial cell-free seed extracts by 1.3- to 2.2-fold in the 13–416 mg Cu kg−1 soil range. Such increase was mainly driven by an enhanced shoot DW yield. The number and distribution of endophytic bacteria in the harvested sunflower tissues must be further examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ACC:

1-Aminocyclopropane-1-carboxylate

C:

Untreated plants

Chl TOT:

Total chlorophyll content

CMg:

Control plants supplemented with a solution of MgSO4

CuTOT:

Total soil Cu

DMF:

N,N-Dimethylformamide

DW SH:

Shoot dry weight yield

DW RT:

Root dry weight yield

IAA:

Indoleacetic acid

PGPB:

Plant growth-promoting bacteria

RE:

Inoculant with endophytic bacteria from the surface-sterilized A. capillaris roots

SE:

Inoculant with endophytic bacteria from the A. capillaris seeds

SEF:

Bacterial cell-free seed extract obtained by filtering a SE aliquot at 0.2 μm

SL:

Maximum stem length

TE:

Trace element

References

  • Adesodun JK, Atayese MO, Agbaje TA, Osadiaye BA, Mafe OF, Soretire AA (2010) Phytoremediation potentials of sunflowers (Tithonia diversifolia and Helianthus annuus) for metals in soils contaminated with zinc and lead nitrates. Water Air Soil Pollut 207(1–4):195–201. doi:10.1007/s11270-009-0128-3

    Article  CAS  Google Scholar 

  • Alaoui-Sosse B, Genet P, Vinit-Dunand F, Toussaint ML, Epron D, Badot PM (2004) Effect of copper on growth in cucumber plants (Cucumis sativus) and its relationships with carbohydrate accumulation and changes in ion contents. Plant Sci 166(5):1213–1218. doi:10.1016/j.plantsci.2003.12.032

    Article  CAS  Google Scholar 

  • Babu AG, Kim J-D, Oh B-T (2013) Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. J Hazard Mater 250:477–483. doi:10.1016/j.jhazmat.2013.02.014

    Article  Google Scholar 

  • Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, Vangronsveld J, van der Lelie D (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22(5):583–588. doi:10.1038/nbt960

    Article  CAS  Google Scholar 

  • Bazely DR, Ball JP, Vicari M, Tanentzap AJ, Berenger M, Rakocevic T, Koh S (2007) Broad-scale geographic patterns in the distribution of vertically-transmitted, asexual endophytes in four naturally-occurring grasses in Sweden. Ecography 30(3):367–374. doi:10.1111/j.2007.0906-7590.04985.x

    Article  Google Scholar 

  • Becerra-Castro C, Kidd PS, Prieto-Fernandez A, Weyens N, Acea M-J, Vangronsveld J (2011) Endophytic and rhizoplane bacteria associated with Cytisus striatus growing on hexachlorocyclohexane-contaminated soil: isolation and characterisation. Plant Soil 340(1–2):413–433. doi:10.1007/s11104-010-0613-x

    Article  CAS  Google Scholar 

  • Becerra-Castro C, Monterroso C, Prieto-Fernández A, Rodríguez-Lamas L, Loureiro-Viñas M, Acea MJ, Kidd PS (2012) Pseudometallophytes colonising Pb/Zn mine tailings: a description of the plant–microorganism–rhizosphere soil system and isolation of metal-tolerant bacteria. J Hazard Mater 217–218:350–359. doi:10.1016/j.jhazmat.2012.03.039

    Article  Google Scholar 

  • Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37(2):241–250. doi:10.1016/j.soilbio.2004.07.033

    Article  CAS  Google Scholar 

  • Bes C, Mench M, Aulen M, Gasté H, Taberly J (2010) Spatial variation of plant communities and shoot Cu concentrations of plant species at a timber treatment site. Plant Soil 330:267–280. doi:10.1007/s11104-009-0198-4

    Article  CAS  Google Scholar 

  • Bressan W, Borges MT (2004) Delivery methods for introducing endophytic bacteria into maize. Biocontrol 49(3):315–322. doi:10.1023/b:bico.0000025372.51658.93

    Article  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46(3):237–245. doi:10.1139/cjm-46-3-237

    Article  CAS  Google Scholar 

  • CETIOM (1995) Les stades repères du tournesol (détails). Available at http://www.cetiom.fr/tournesol/cultiver-du-tournesol/atouts-points-cles/stades-reperes/stades-reperes-detailles/?print=1. Access on 21 May 2014

  • Chen H, Cutright TJ (2003) Preliminary evaluation of microbially mediated precipitation of cadmium, chromium, and nickel by rhizosphere consortium. J Environ Eng 129(1):4–9. doi:10.1061/(asce)0733-9372(2003)129:1(4)

    Article  CAS  Google Scholar 

  • Chen YX, Wang YP, Lin Q, Luo YM (2005) Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens. Environ Int 31(6):861–866. doi:10.1016/j.envint.2005.05.044

    Article  CAS  Google Scholar 

  • Cherian S, Weyens N, Lindberg S, Vangronsveld J (2012) Phytoremediation of trace element-contaminated environments and the potential of endophytic bacteria for improving this process. Crit Rev Environ Sci Technol 42(21):2215–2260. doi:10.1080/10643389.2011.574106

    Article  CAS  Google Scholar 

  • Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37(Database issue):D141–D145. doi:10.1093/nar/gkn879PMCID, PMC2686447

    Article  CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clement C, Barka EA (2005a) Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71(9):4951–4959. doi:10.1128/aem. 71.9.4951-4959.2005

    Article  CAS  Google Scholar 

  • Compant S, Reiter B, Sessitsch A, Nowak J, Clement C, Barka EA (2005b) Endophytic colonization of Vitis vinifera L. by plant growth promoting bacterium Burkholderia sp strain PsJN. Appl Environ Microbiol 71(4):1685–1693. doi:10.1128/aem. 71.4.1685-1693.2005

    Article  CAS  Google Scholar 

  • Compant S, Clement C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42(5):669–678. doi:10.1016/j.soilbio.2009.11.024

    Article  CAS  Google Scholar 

  • De la Iglesia R, Castro D, Ginocchio R, van der Lelie D, Gonzalez B (2006) Factors influencing the composition of bacterial communities found at abandoned copper-tailings dumps. J Appl Microbiol 100(3):537–544. doi:10.1111/j.1365-2672.2005.02793.x

    Article  Google Scholar 

  • Dickinson NM, Baker AJM, Doronila A, Laidlaw S, Reeves RD (2009) Phytoremediation of inorganics: realism and synergies. Int J Phytoremediation 11(2):97–114. doi:10.1080/15226510802378368

    Article  CAS  Google Scholar 

  • Evon P, Vandenbossche V, Rigal L (2012) Manufacturing of renewable and biodegradable fiberboards from cake generated during biorefinery of sunflower whole plant in twin-screw extruder: Influence of thermopressing conditions. Polymer Degradation and Stability 97(10):1940–1947. doi:10.1016/j.polymdegradstab.2012.01.025

  • Faessler E, Robinson BH, Stauffer W, Gupta SK, Papritz A, Schulin R (2010) Phytomanagement of metal-contaminated agricultural land using sunflower, maize and tobacco. Agric Ecosyst Environ 136(1–2):49–58. doi:10.1016/j.agee.2009.11.007

    Article  CAS  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28(3):367–374. doi:10.1016/j.biotechadv.2010.02.001

    Article  CAS  Google Scholar 

  • Glick BR, Stearns JC (2011) Making phytoremediation work better: maximizing a plant’s growth potential in the midst of adversity. Int J Phytoremediation 13(Suppl 1):4–16

    Article  Google Scholar 

  • Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16(10):463–471. doi:10.1016/j.tim.2008.07.008

    Article  CAS  Google Scholar 

  • Herzig R, Nehnevajova E, Pfistner C, Schwitzguébel JP, Ricci A, Keller C (2014) Feasibility of labile Zn phytoextraction using enhanced tobacco and sunflower: results of five- and one-year field-scale experiments in Switzerland. Int J Phytoremediation 16(7–8):735–754. doi:10.1080/15226514.2013.856846

    Article  CAS  Google Scholar 

  • Hewitt E (1966) Sand and water culture methods used in the study of plant nutrition. The Eastern press Ltd, London

    Google Scholar 

  • Idris R, Trifonova R, Puschenreiter M, Wenzel WW, Sessitsch A (2004) Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl Environ Microbiol 70(5):2667–2677. doi:10.1128/a-em.70.5.2667-2677.2004

    Article  CAS  Google Scholar 

  • ISO (2005) Soil quality—determination of the effects of pollutants on soil flora Part 2: effects of chemicals on the emergence and growth of higher plants, vol ISO 11269–2. Geneva

  • Kabagale AC, Cornu B, van Vliet F, Meyer C-L, Mergeay M, Simbi J-BL, Droogmans L, Vander Wauven C, Verbruggen N (2010) Diversity of endophytic bacteria from the cuprophytes Haumaniastrum katangense and Crepidorhopalon tenuis. Plant Soil 334(1–2):461–474. doi:10.1007/s11104-010-0396-0

    Article  Google Scholar 

  • Kinraide TB, Pedler JF, Parker DR (2004) Relative effectiveness of calcium and magnesium in the alleviation of rhizotoxicity in wheat induced by copper, zinc, aluminum, sodium, and low pH. Plant Soil 259(1–2):201–208. doi:10.1023/b:plso.0000020972.18777.99

    Article  CAS  Google Scholar 

  • Kiran B, Lalitha V, Raveesha KA (2011) Antifungal and growth promoting potentiality of seeds of Psoralea corylifolia L. Res J Pharm Biol Chem Sci 2(3):564–573, Available at http://www.rjpbcs.com/pdf/2011_2(3)/68.pdf. Access on November 21, 2014

    Google Scholar 

  • Kolbas A, Mench M, Herzig R, Nehnevajova E, Bes CM (2011) Copper phytoextraction in tandem with oilseed production using commercial cultivars and mutant lines of sunflower. Int J Phytoremediation 13(Suppl 1):55–76. doi:10.1080/15226514.2011.568536

    Article  Google Scholar 

  • Kolbas A, Mench M, Marchand L, Herzig R, Nehnevajova E (2014) Phenotypic seedling responses of a metal-tolerant mutant line of sunflower growing on a Cu-contaminated soil series: potential uses for biomonitoring of Cu exposure and phytoremediation. Plant Soil 376(1–2):377–397. doi:10.1007/s11104-013-1974-8

    Article  CAS  Google Scholar 

  • Kuffner M, Puschenreiter M, Wieshammer G, Gorfer M, Sessitsch A (2008) Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant Soil 304(1–2):35–44. doi:10.1007/s11104-007-9517-9

    Article  CAS  Google Scholar 

  • Kuffner M, De Maria S, Puschenreiter M, Fallmann K, Wieshammer G, Gorfer M, Strauss J, Rivelli AR, Sessitsch A (2010) Culturable bacteria from Zn- and Cd-accumulating Salix caprea with differential effects on plant growth and heavy metal availability. J Appl Microbiol 108(4):1471–1484. doi:10.1111/j.1365-2672.2010.04670.x

    Article  CAS  Google Scholar 

  • Lagriffoul A, Mocquot B, Mench M, Vangronsveld J (1998) Cadmium toxicity effects on growth, mineral and chlorophyll contents, and activities of stress related enzymes in young maize plants (Zea mays L.). Plant Soil 200(2):241–250. doi:10.1023/a:1004346905592

    Article  CAS  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175

    Google Scholar 

  • Lebeau T, Braud A, Jezequel K (2008) Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review. Environ Pollut 153(3):497–522. doi:10.1016/j.envpol.2007.09.015

    Article  CAS  Google Scholar 

  • Lequeux H, Hermans C, Lutts S, Verbruggen N (2010) Response to copper excess in Arabidopsis thaliana: impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiol Biochem 48(8):673–682. doi:10.1016/j.plaphy.2010.05.005

    Article  CAS  Google Scholar 

  • Li L, Henry GE, Seeram NP (2009) Identification and bioactivities of resveratrol oligomers and flavonoids from Carex folliculata seeds. J Agric Food Chem 57(16):7282–7287. doi:10.1021/jf901716j

    Article  CAS  Google Scholar 

  • Lodewyckx C, Taghavi S, Mergeay M, Vangronsveld J, Clijsters H, van der Lelie D (2001) The effect of recombinant heavy metal-resistant endophytic bacteria on heavy metal uptake by their host plant. Int J Phytoremediation 3(2):173–187. doi:10.1080/15226510108500055

    Article  CAS  Google Scholar 

  • Luo S, Xu T, Chen L, Chen J, Rao C, Xiao X, Wan Y, Zeng G, Long F, Liu C, Liu Y (2012) Endophyte-assisted promotion of biomass production and metal-uptake of energy crop sweet sorghum by plant-growth-promoting endophyte Bacillus sp SLS18. Appl Microbiol Biotechnol 93(4):1745–1753. doi:10.1007/s00253-011-3483-0

    Article  CAS  Google Scholar 

  • Lyubun Y, Chernyshova M (2010) Use of rhizobacteria to inoculate agricultural crops grown on arsenic-polluted soil. J Biotechnol 150:S247–S247. doi:10.1016/j.jbiotec.2010.09.118

    Article  Google Scholar 

  • Ma Y, Rajkumar M, Freitas H (2009) Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea. J Environ Manag 90(2):831–837. doi:10.1016/j.jenvman.2008.01.014

    Article  Google Scholar 

  • Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011a) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29(2):248–258. doi:10.1016/j.biotechadv.2010.12.001

    Article  CAS  Google Scholar 

  • Ma Y, Rajkumar M, Luo Y, Freitas H (2011b) Inoculation of endophytic bacteria on host and non-host plants—effects on plant growth and Ni uptake. J Hazard Mater 195:230–237. doi:10.1016/j.jhazmat.2011.08.034

    Article  CAS  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Sa T (2007) Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere 69(2):220–228. doi:10.1016/j.chemosphere.2007.04.017

    Article  CAS  Google Scholar 

  • Malinowski DP, Zuo H, Belesky DP, Alloush GA (2004) Evidence for copper binding by extracellular root exudates of tall fescue but not perennial ryegrass infected with Neotyphodium spp. endophytes. Plant Soil 267(1–2):1–12. doi:10.1007/s11104-005-2575-y

    Article  CAS  Google Scholar 

  • Mastretta C, Taghavi S, van der Lelie D, Mengoni A, Galardi F, Gonnelli C, Barac T, Boulet J, Weyens N, Vangronsveld J (2009) Endophytic bacteria from seeds of Nicotiana tabacum can reduce cadmium phytotoxicity. Int J Phytoremediation 11(3):251–267. doi:10.1080/15226510802432678

    Article  CAS  Google Scholar 

  • Meers E, Ruttens A, Hopgood M, Lesage E, Tack FMG (2005) Potential of Brassica rapa, Cannabis sativa, Helianthus annuus and Zea mays for phytoextraction of heavy metals from calcareous dredged sediment derived soils. Chemosphere 61(4):561–572. doi:10.1016/j.chemosphere.2005.02.026

    Article  CAS  Google Scholar 

  • Mench M, Schwitzguebel J-P, Schroeder P, Bert V, Gawronski S, Gupta S (2009) Assessment of successful experiments and limitations of phytotechnologies: contaminant uptake, detoxification and sequestration, and consequences for food safety. Environ Sci Pollut Res 16(7):876–900. doi:10.1007/s11356-009-0252-z

    Article  CAS  Google Scholar 

  • Mench M, Lepp N, Bert V, Schwitzguebel J-P, Gawronski SW, Schroeder P, Vangronsveld J (2010) Successes and limitations of phytotechnologies at field scale: outcomes, assessment and outlook from COST Action 859. J Soils Sediments 10(6):1039–1070. doi:10.1007/s11368-010-0190-x

    Article  CAS  Google Scholar 

  • Mergeay M, Nies D, Schlegel HG, Gerits J, Charles P, Vangijsegem F (1985) Alcaligenes-eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy-metals. J Bacteriol 162(1):328–334

    CAS  Google Scholar 

  • Navari-Izzo F, Cestone B, Cavallini A, Natali L, Giordani T, Quartacci MF (2006) Copper excess triggers phospholipase D activity in wheat roots. Phytochemistry 67(12):1232–1242. doi:10.1016/j.phytochem.2006.04.006

    Article  CAS  Google Scholar 

  • Poschenrieder P, Cabot C, Martos S, Gallego B, Barceló J (2013) Do toxic ions induce hormesis in plants? Plant Sci 212:15–25. doi:10.1016/j.plantsci.2013.07.012

    Article  CAS  Google Scholar 

  • Rajkumar M, Ae N, Freitas H (2009) Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77(2):153–160. doi:10.1016/j.chemosphere.2009.06.047

    Article  CAS  Google Scholar 

  • Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30(6):1562–1574. doi:10.1016/j.biotechadv.2012.04.011

    Article  CAS  Google Scholar 

  • Rani A, Shouche YS, Goel R (2008) Declination of copper toxicity in pigeon pea and soil system by growth-promoting Proteus vulgaris KNP3 strain. Curr Microbiol 57(1):78–82. doi:10.1007/s00284-008-9156-2

    Article  CAS  Google Scholar 

  • Reed MLE, Glick BR (2005) Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria and either copper or polycyclic aromatic hydrocarbons. Can J Microbiol 51(12):1061–1069. doi:10.1139/w05-094

    Article  CAS  Google Scholar 

  • Rivelli AR, Sd M, Puschenreiter M, Gherbin P, de Maria S (2012) Accumulation of cadmium, zinc, and copper by Helianthus annuus L.: impact on plant growth and uptake of nutritional elements. Int J Phytoremediation 14(4):320–334. doi:10.1080/15226514.2011.620649

    Article  CAS  Google Scholar 

  • Ronda JC, Lligadas G, Galia M, Cadiz V (2011) Vegetable oils as platform chemicals for polymer synthesis. European Journal of Lipid Science and Technology 113(1):46–58. doi:10.1002/ejlt.201000103

  • Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278(1):1–9. doi:10.1111/j.1574-6968.2007.00918.x

    Article  CAS  Google Scholar 

  • Rylo Sona Janarthine S, Eganathan P (2012) Plant growth promoting of endophytic Sporosarcina aquimarina SJAM16103 isolated from the pneumatophores of Avicennia marina L. Int J Microbiol 2012(ID 532060):1–10. doi:10.1155/2012/532060

    Article  Google Scholar 

  • Saikkonen K, Ahlholm J, Helander M, Lehtimaki S, Niemelainen O (2000) Endophytic fungi in wild and cultivated grasses in Finland. Ecography 23(3):360–366. doi:10.1034/j.1600-0587.2000.d01-1645.x

    Article  Google Scholar 

  • Sarkar D, Bhowmik PC, Kwon Y-I, Shetty K (2009) Clonal response to cold tolerance in creeping bentgrass and role of proline-associated pentose phosphate pathway. Bioresour Technol 100(21):5332–5339. doi:10.1016/j.biortech.2009.03.086

    Article  CAS  Google Scholar 

  • Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, Puschenreiter M (2013) The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60:182–194. doi:10.1016/j.soilbio.2013.01.012

    Article  CAS  Google Scholar 

  • Shaul O (2002) Magnesium transport and function in plants: the tip of the iceberg. Biometals 15(3):309–323

    Article  CAS  Google Scholar 

  • Sheng X, Xia J, Jiang C, He L, Qian M, Sheng XF, Xia JJ, Jiang CY, He LY, Qian M (2008) Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut 156(3):1164–1170. doi:10.1016/j.envpol.2008.04.007

    Article  CAS  Google Scholar 

  • Sturz AV, Nowak J (2000) Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. Appl Soil Ecol 15(2):183–190. doi:10.1016/s0929-1393(00)00094-9

    Article  Google Scholar 

  • Sun L-N, Zhang Y-F, He L-Y, Chen Z-J, Wang Q-Y, Qian M, Sheng X-F (2010) Genetic diversity and characterization of heavy metal-resistant-endophytic bacteria from two copper-tolerant plant species on copper mine wasteland. Bioresour Technol 101(2):501–509. doi:10.1016/j.biortech.2009.08.011

    Article  CAS  Google Scholar 

  • Sziderics AH, Rasche F, Trognitz F, Sessitsch A, Wilhelm E (2007) Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). Can J Microbiol 53(11):1195–1202. doi:10.1139/w07-082

    Article  CAS  Google Scholar 

  • Truyens S, Jambon I, Croes S, Janssen J, Weyens N, Mench M, Carleer R, Cuypers A, Vangronsveld J (2014) The effect of long-term Cd and Ni exposure on seed endophytes of Agrostis capillaris and their potential application in phytoremediation of metal-contaminated soils. Int J Phytoremediation 16(7–8):643–659. doi:10.1080/15226514.2013.837027

    Article  CAS  Google Scholar 

  • Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E, van der Lelie D, Mench M (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16(7):765–794. doi:10.1007/s11356-009-0213-6

    Article  CAS  Google Scholar 

  • Wang ZW, Wang SM, Ji YL, Zhao MW, Yu HS (2005) Plant endophyte research-detection and distribution of endophytic fungi in poaceous plants in saline-alkali areas in Dongying, Shandong, China. Pratacultural Sci 22(2):60–64

    CAS  Google Scholar 

  • Wang W, Deng Z, Tan H, Cao L (2013) Effects of Cd, Pb, Zn, Cu-resistant endophytic enterobacter sp CBSB1 and Rhodotorula sp CBSB79 on the growth and phytoextraction of Brassica plants in multimetal contaminated soils. Int J Phytoremediation 15(5):488–497. doi:10.1080/15226514.2012.716101

    Article  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009) Phytoremediation: plant-endophyte partnerships take the challenge. Curr Opin Biotechnol 20(2):248–254. doi:10.1016/j.copbio.2009.02.012

    Article  CAS  Google Scholar 

  • Wood JE, Senthilmohan ST, Peskin AV (2002) Antioxidant activity of procyanidin-containing plant extracts at different pHs. Food Chem 77(2):155–161

    Article  CAS  Google Scholar 

  • Wu L, Huang Z, Qin P, Yao Y, Meng X, Zou J, Zhu K, Ren G (2011) Chemical characterization of a procyanidin-rich extract from sorghum bran and its effect on oxidative stress and tumor inhibition in vivo. J Agric Food Chem 59(16):8609–8615. doi:10.1021/jf2015528

    Article  CAS  Google Scholar 

  • Xie P, HaoX, Herzberg M, Luo Y, Nies DH, Wei G (2014) Genomic analyses of metal resistance genes in three plant growth promoting bacteria of legume plants in Northwest mine tailings, China. Journal of Environmental Sciences (in press). doi:10.1016/j.jes.2014.07.017

  • Y-f Z, L-y H, Z-j C, Q-y W, Qian M, X-f S (2011) Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus. Chemosphere 83(1):57–62. doi:10.1016/j.chemosphere.2011.01.041

    Article  Google Scholar 

  • Zagorchev L, Seal CE, Kranner I, Odjakova M (2013) A central role for thiols in plant tolerance to abiotic stress. Int J Mol Sci 14(4):7405–7432. doi:10.3390/ijms14047405

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by ADEME, Department of Urban Brownfields and Polluted Sites, Angers, France, and the European Commission under the Seventh Framework Programme for Research (FP7-KBBE-266124, GREENLAND). This study has been carried out in the framework of the Cluster of Excellence COTE. The authors thank Dr. Jean-Paul Maalouf for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Mench.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolbas, A., Kidd, P., Guinberteau, J. et al. Endophytic bacteria take the challenge to improve Cu phytoextraction by sunflower. Environ Sci Pollut Res 22, 5370–5382 (2015). https://doi.org/10.1007/s11356-014-4006-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-4006-1

Keywords

Navigation