Skip to main content

Advertisement

Log in

Arsenic mobility and speciation in contaminated kitchen garden and lawn soils: an evaluation of water for assessment of As phytoavailability

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Emissions from primary lead smelters have been recognized as one of the mainly factor which has contributed to the contamination of soils by metals. Less attention has been paid to volatile metalloids such as arsenic (As) which accompanies lead (Pb) smelting activities. One of the objectives of this study was to determine the As concentrations in various extracting solutions using a collection of urban soils located no far away from two former Pb and zinc plants in the North of France. The procedure for the determination of As, AsIII, and AsV with hydride vapor generator atomic absorption spectrometry was described in details. Pseudo-total concentrations of As in the studied soils ranged from 5.3 to 65.9 mg kg−1. Good correlations were found between As and lead, zinc, and cadmium concentrations in soils. These depended on the soil uses and the soil distance from the source of contamination. Because the form of As may pose a health risk to human population, its speciation was determined in each urban top soils. Very good correlations were found between AsIII and AsV versus As concentrations in soils studied, but the results did no permit to establish a relation between the location of soils and their uses. In contrast, it was shown that the highest mobility factor and lowest partitioning index values were related to the location. The mobilty of As depended on the assimilated phosphorus (P), carbonate contents, and pH. The percentages of the water-extractable As concentrations ranged from 0.3 to 3.0 % of the As concentrations in soils. Very good positive correlations between water-extractable AsIII and AsV versus water-extractable As concentrations were obtained. It was shown that the water-extractable AsIII concentrations depended on the soil uses. The results revealed that soils for which the As was the most mobile presented the highest water-extractable As concentrations. Principal component analysis indicated that mechanisms related to the release of As depended on the physico-chemical parameters of the soils, particularly on the assimilated P, organic matter, and/or iron oxides/hydroxides contents. Finally, the glasshouse experiments using ryegrass as plant model and three soils with similar physico-chemical parameters with regard to the PCA analysis showed that the water extracting solution could be a good indicator to evaluate the As phytoavailability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adriano DC (2001) Trace elements in terrestrial environments: biogeochemistry, bioavailability and risks of metals, 2nd edn. Spinger, New York

    Book  Google Scholar 

  • AFNOR (1994) Soil quality—pretreatment of samples for physico-chemical analyses—NF ISO 11464. Association Française de Normalisation, Paris

    Google Scholar 

  • Ahmad MA, Gupta M (2013) Exposure of Brassica juncea (L) to arsenic species in hydroponic medium: comparative analysis in accumulation and biochemical and transcriptional alterations. Environ Sci Pollut Res 20:8141–8150. doi:10.1007/s11356-013-1632-y

    Article  CAS  Google Scholar 

  • Ascar L, Ahumada I, Richter P (2008) Influence of redox potential (Eh) on the availability of arsenic species in soils and soils amended with biosolid. Chemosphere 72:1548–1552. doi:10.1016/j.chemosphere.2008.04.056

    Article  CAS  Google Scholar 

  • Baig JA, Kazi TG, Arain MB, Shah AQ, Sarfraz RA, Afridi HI, Kandhro GA, Jamali MK, Khan S (2009) Arsenic fractionation in sediments of different origins using BCR sequential and single extraction methods. J Hazard Mater 167:745–751. doi:10.1016/j.jhazmat.2009.01.040

    Article  CAS  Google Scholar 

  • Bayard R, Chatain V, Gachet C, Troadec A, Gourdon R (2006) Mobilisation of arsenic from a mining soil in batch slurry experiments under bio-oxidative conditions. Water Res 40:1240–1248. doi:10.1016/j.watres.2006.01.025

    Article  CAS  Google Scholar 

  • Bettinelli M, Baffi C, Beone GM, Spezia S (2000) Soils and sediments analysis by spectroscopic techniques part II: determination of trace elements by ICP-MS. Atom Spectrom 21:60–70

    CAS  Google Scholar 

  • Bodénan F, Baranger P, Piantone P, Lassin A, Azaroual M, Gaucher E, Braibant G (2004) Arsenic behaviour in gold-ore mill tailings, Massif Central, France: hydrogeochemical study and investigation of in situ redox signature. Appl Geochem 19:1785–1800. doi:10.1016/j.apgeochem.2004.03.012

    Article  Google Scholar 

  • Bossy A, Grosbois C, Hendershot W, Beauchemin S, Crouzet C, Bril H (2012) Contributions of natural arsenic sources to surface waters on a high grade arsenic-geochemical anomaly (Franch Massif Central). Sci Total Environ 432:257–268. doi:10.1016/j.scitotenv.2012.05.090

    Article  CAS  Google Scholar 

  • Cancès B, Juillot F, Morin G, Laperche V, Polya D, Vaughan DJ, Hazzemann JL, Proux O, Brown GE Jr, Calas G (2008) Changes in arsenic speciation through a contaminated soil profile: a XAS based study. Sci Total Environ 397:178–189. doi:10.1016/j.scitotenv.2008.02.023

    Article  Google Scholar 

  • Charlet L, Ansari AA, Lespagnol G, Musso M (2001) Risk of arsenic transfer to a semi-confined aquifer and the effect of water level fluctuation in North Mortagne France at a former industrial site. Sci Total Environ 277:133–147. doi:10.1016/S0048-9697(00)00869-X

    Article  CAS  Google Scholar 

  • Dani SU (2010) Arsenic for the fool: an exponential connection. Sci Total Environ 408:1842–1846. doi:10.1016/j.scitotenv.2010.01.027

    Article  CAS  Google Scholar 

  • Dixit S, Hering JG (2003) Comparison of arsenic (V) and arsenic (III) sorption onto iron oxide minerals: implications for arsenic mobility. Environ Sci Technol 37:4182–4189. doi:10.1021/es030309t

    Article  CAS  Google Scholar 

  • Douay F, Pruvot C, Roussel H, Ciesielski H, Fourrier H, Proix N, Waterlot C (2008) Contamination of urban soils in an area of Northern France polluted by dust emissions of two smelters. Water Air Soil Pollut 188:247–260. doi:10.1007/s11270-007-9541-7

    Article  CAS  Google Scholar 

  • Doušová B, Martaus A, Filippi M, Koloušek D (2008) Stability of arsenic species in soils contaminated naturally and in an anthropogenic manner. Water Soil Pollut 187:233–241. doi:10.1007/s11270-007-9511-0

    Google Scholar 

  • DRIRE (2003) L’industrie au Regard de l’Environnement. Ministère de l’Economie des Finances et de l’Industrie, Nord Pas-de-Calais

    Google Scholar 

  • Elbaz-Poulichet F, Seidel JL, Casiot C, Tusseau-Vuillemin MH (2006) Short-term variability of dissolved trace element concentrations in the Marne and Seine Rivers near Paris. Sci Total Environ 367:278–287. doi:10.1016/j.scitotenv.2005.11.009

    Article  CAS  Google Scholar 

  • Ettler V, Mihaljevič M, Kříbek MV, Šebek O (2011) Tracing the spatial distribution and mobility of metal/metalloid contaminants in Oxisols in the vicinity of the Nkana copper smelter, Copperbelt province, Zambia. Geoderma 164:73–84. doi:10.1016/j.scitotenv.2005.11.009

    Article  CAS  Google Scholar 

  • Folkes DJ, Helgen SO, Litle RA (2001) Impact of historical arsenical pesticide use on residential soils in Denver, Colorado, U.S.A. In: Proc. 4th Int. Conf. On Arsenic Exposure and Health Effects, San Diego 97–113.

  • Ghosh M, Pal DK, Santra SC (2012) Different land use and other physical and socio-economic parameters in ground water arsenic concentration. Int J Sci Emerg Tech 3:89–101

    Google Scholar 

  • Gusiatin ZM, Klimiuk E (2012) Metal (Cu, Cd and Zn) removal and stabilization during multiple soil washing by saponin. Chemosphere 86:383–391. doi:10.1016/j.chemosphere.2011.10.027

    Article  CAS  Google Scholar 

  • Han FX, Banin A, Kingery WL, Triplett GB, Zhou LX, Zheng SJ, Ding WX (2003) New approach to studies of heavy metal redistribution in soil. Adv Environ Res 8:113–120. doi:10.1016/S1093-0191(02)00142-9

    Article  CAS  Google Scholar 

  • Hartley W, Lepp NW (2008) Effect of in situ soil amendments on arsenic uptake in successive harvests of ryegrass (Lolium perenne cv Elka) grown in amended As-polluted soils. Environ Pollut 156:1030–1040. doi:10.1016/j.scitotenv.2007.09.021

    Article  CAS  Google Scholar 

  • Kabata-Pendias A, Pendias H (2001) Elements of group V, In Trace elements in soils and plants. CRC, Boca Raton

    Google Scholar 

  • Keegan TJ, Farago ME, Thornton I, Hong B, Colvile RN, Pesh B, Jakubis P, Nieuwenhuijsen MJ (2006) Dispersion of As and selected heavy metals around a coal-burning power station in central slovakia. Sci Total Environ 358:61–71. doi:10.1016/j.scitotenv.2005.03.020

    Article  CAS  Google Scholar 

  • Komorowicz I, Baralkiewicz D (2011) Arsenic and its speciation in water samples by high performance liquid chromatography inductively coupled plasma mass spectrometry—last decade review. Talanta 84:247–261. doi:10.1016/j.talanta.2010.10.065

    Article  CAS  Google Scholar 

  • Kumpiene J, Desogus P, Schulenburg S, Arenella M, Renella G, Brännvall E, Lagerkvist A, Andreas L, Sjöblom R (2013) Utilisation of chemically stabilised arsenic-contaminated soil in a landfill cover. Environ Sci Pollut Res 20:8649–8662. doi:10.1007/s11356-013-1818-3

    Article  CAS  Google Scholar 

  • Ma LQ, Rao GN (1997) Chemical fractionation of cadmium, copper, nickel and zinc in contaminated soils. J Environ Qual 26:259–264. doi:10.2134/jeq1997.00472425002600010036x

    Article  CAS  Google Scholar 

  • Macedo SM, de Jesus RM, Garcia KS, Hatje V, Queiroz AFde S, Ferreira SLC (2009) Determination of total arsenic and arsenic (III) in phosphate fertilizers and phosphate rocks by HG-AAS after multivariate optimization based on Box-Behnken design. Talanta 80:974–979. doi:10.1016/j.talanta.2009.08.025

    Article  CAS  Google Scholar 

  • Manning BA, Goldberg S (1996) Modeling competitive adsorption of arsenate with phosphate and molybdate on oxide minerals. Soil Sci Soc Am J 60:121–131

    Article  CAS  Google Scholar 

  • Marin AR, Masscheleyn PH, Patrick WH Jr (1993) Soil redox-pH stability of arsenic species and its influence on arsenic uptake by rice. Plant Soil 152:245–253. doi:10.1007/BF00029094

    Article  CAS  Google Scholar 

  • Masscheleyn PH, Delaune RD, Patrick WH Jr (1991) Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environ Sci Technol 25:1414–1419. doi:10.1021/es00020a008

    Article  CAS  Google Scholar 

  • Masson M, Schäfer BG, Pierre A (2007) Seasonal variations and annual fluxes of arsenic in the Garonne, Dordogne and Isle Rivers, France. Sci Total Environ 373:196–207. doi:10.1016/j.scitotenv.2006.10.039

    Article  CAS  Google Scholar 

  • Meharg AA, Jardine L (2003) Arsenite transport into paddy rice (Oryza sativa) roots. New Phytol 157:39–44. doi:10.1046/j.1469-8137.2003.00655.x

    Article  CAS  Google Scholar 

  • Meng X, Bang S, Korfiatis GP (2000) Effects of silicate, sulfate, and chromate on arsenic removal by ferric chloride. Water Resour 34:1255–1261. doi:10.1016/S0043-1354(99)00272-9

    CAS  Google Scholar 

  • Molinari A, Ayora C, Marcaccio M, Guadagnini L, Sanchez-Villa X, Guadagnini A (2013) Geochemical modeling of arsenic release from a deep natural solid matrix under alternated redox conditions. Environ Sci Pollut Res 21:1628–1637. doi:10.1007/s11356-013-2054-6

    Article  Google Scholar 

  • Navarro MC, Pérez-Sirvent MJM-S, Vidal J, Marimόn J (2006) Lead, cadmium and arsenic bioavailability in the abandoned mine site of Cabezo Rajao (Murcia, SE Spain). Chemosphere 63:484–489. doi:10.1016/j.chemosphere.2005.08.017

    Article  CAS  Google Scholar 

  • Novak M, Erbanova L, Fottova D, Cudlin P, Kubena A (2011) Behaviour of arsenic in forested catchments following a high-pollution period. Environ Pollut 159:204–211. doi:10.1016/j.envpol.2010.09.002

    Article  CAS  Google Scholar 

  • Nriagu JO (1994) Arsenic in the environment. Part I: cycling and characterization. John Wiley & Sons, INC, New York

    Google Scholar 

  • Peryea FJ (1998) Phosphate starter fertilizer temporarily enhances soil arsenic uptake by apple trees grown under field conditions. Hort Sci 33: 826–829

  • Rauret G, Lopez-Sandez JF, Sahuquillo A, Barahona E, Lachica M, Ure AM, Davidson CM, Gomez A, Lück D, Bacon J, Yli-Halla M, Muntau H, Quevauviller P (2000) Application of a modified BCR sequential extraction (three-step) procedure for the determination of extractable trace metal contents in a sewage sludge amended soil reference material (CRM 483), completed by a three-year stability study acetic acid and EDTA extractable metal content. J Environ Monit 2:228–233. doi:10.1039/B001496F

    Article  CAS  Google Scholar 

  • Schulin R, Curchod F, Mondeshka M, Daskalova A, Keller A (2007) Heavy metal contamination along a soil transect in the vicinity of the iron smelter of Kremikovtzi (Bulgaria). Geoderma 140:52–61. doi:10.1016/j.geoderma.2007.03.007

    Article  CAS  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters! Appl Geochem 17:517–568. doi:10.1016/S0883-2927(02)00018-5

    Article  CAS  Google Scholar 

  • Smith E, Naidu R, Alston AM (1998) Arsenic in the soil environment; a review. In: Sparks DL (ed) Advances in Agronomy. Academic, San Diego, pp 149–195

    Google Scholar 

  • Smith E, Naidu R, Alston AM (2002) Chemistry of inorganic arsenic in soils: II. Effect of phosphorus, sodium and calcium on arsenic sorption. J Environ Qual 31:557–563

    Article  CAS  Google Scholar 

  • Soukup D, Buck B, Goossens D, Ulery A, McLaurin BT, Baron D, Teng Y (2012) Arsenic concentrations in dust emissions from wind erosion and off-road vehicles in the Nellis Dunes Recreational Area, Nevada, USA. Aeolian Res 5:77–89. doi:10.1016/j.aeolia.2011.11.001

    Article  Google Scholar 

  • Stasinakis AS, Thomaidis NS, Giannes AS, Lekkas TD (2003) Effect of arsenic and mercury speciation on inhibition of respiration rate in activated sludge systems. Environ Sci Pollut Res 10:177–182. doi:10.1065/espr2002.05.121

    Article  CAS  Google Scholar 

  • Sterckeman T, Douay F, Proix N, Fourrier H, Perdrix E (2002) Assessment of the contamination of cultivated soils by eighteen trace elements around smelters in the north of France. Water Air Soil Pollut 135:173–194. doi:10.1023/A:1014758811194

    Article  CAS  Google Scholar 

  • Sterckeman T, Douay F, Baize D, Fourrier H, Proix N, Schvartz C (2006a) Trace element in soils developed in sedimentary materials from Northern France. Geoderma 136:912–929. doi:10.1016/j.geoderma.2006.06.010

    Article  CAS  Google Scholar 

  • Sterckeman T, Douay F, Baize D, Fourrier H, Proix N, Schvartz C, Carignan J (2006b) Trace element distributions in soils developed in loess deposits from northern France. Eur J Soil Sci 57:392–410. doi:10.1111/j.1365-2389.2005.00750.x

    Article  CAS  Google Scholar 

  • Sutherland RA (2010) BCR®-701: a review of 10-years of sequential extraction analyses. Anal Chim Acta 680:10–20. doi:10.1016/j.aca.2010.09.016

    Article  CAS  Google Scholar 

  • Taggart MA, Carlisle M, Pain DJ, Williams R, Osborn D, Joyson A, Mehard AA (2004) The distribution of arsenic in soils affected by the Aznalcόllar mine spill, SW Spain. Sci Total Environ 323:137–152. doi:10.1016/j.scitotenv.2003.10.008

    Article  CAS  Google Scholar 

  • Turpeinen R, Pantsar-Kallio M, Häggblom M, Kairesalo T (1999) Influence of microbes on the mobilization, toxicity and biomethylation of arsenic in soil. Sci Total Environ 236:173–180. doi:10.1016/S0048-9697(99)00269-7

    Article  CAS  Google Scholar 

  • Waterlot C, Pruvot C, Ciesielski H, Douay F (2011) Effects of a phosphorus amendment and the pH of water used for watering on the mobility and phytoavailability of Cd, Pb and Zn in highly contaminated kitchen garden soils. Ecol Eng 37:1081–1093. doi:10.1016/j.ecoleng.2010.09.001

  • Waterlot C, Bidar G, Pruvot C, Douay F (2012) Effects of grinding and shaking on Cd, Pb and Zn distribution in anthropogenically impacted soils. Talanta 98:185–196. doi:10.1016/j.talanta.2012.06.068

    Article  CAS  Google Scholar 

  • Waterlot C, Bidar G, Pelfrêne A, Roussel H, Fourrier H, Douay F (2013) Contamination, fractionation and availability of metals in urban soils in the vicinity of former lead and zinc smelters, France. Pedosphere 23:143–159. doi:10.1016/S1002-0160(13)60002-8

    Article  CAS  Google Scholar 

  • Wysocki R, Chéry CC, Wawrzycka D, Van Hulle M, Cornelis R, Thevelin JM, Tamas J (2001) The glycerol channel Fps1p mediated the uptake of arsenite and antimonite in Saccharomyces cerevisiae. Mol Microbiol 40:1391–1401. doi:10.1046/j.1365-2958.2001.02485.x

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Waterlot.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waterlot, C., Douay, F. Arsenic mobility and speciation in contaminated kitchen garden and lawn soils: an evaluation of water for assessment of As phytoavailability. Environ Sci Pollut Res 22, 6164–6175 (2015). https://doi.org/10.1007/s11356-014-3829-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3829-0

Keywords

Navigation