Skip to main content

Advertisement

Log in

Psychotropic drugs in mixture alter swimming behaviour of Japanese medaka (Oryzias latipes) larvae above environmental concentrations

  • Pharmaceuticals in the aquatic environment
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Psychiatric pharmaceuticals, such as anxiolytics, sedatives, hypnotics and antidepressors, are among the most prescribed active substances in the world. The occurrence of these compounds in the environment, as well as the adverse effects they can have on non-target organisms, justifies the growing concern about these emerging environmental pollutants. This study aims to analyse the effects of six psychotropic drugs, valproate, cyamemazine, citalopram, sertraline, fluoxetine and oxazepam, on the survival and locomotion of Japanese medaka Oryzias latipes larvae. Newly hatched Japanese medaka were exposed to individual compounds for 72 h, at concentrations ranging from 10 μg L−1 to 10 mg L−1. Lethal concentrations 50 % (LC50) were estimated at 840, 841 and 9,136 μg L−1 for fluoxetine, sertraline and citalopram, respectively, while other compounds did not induce any significant increase in mortality. Analysis of the swimming behaviour of larvae, including total distance moved, mobility and location, provided an estimated lowest observed effect concentration (LOEC) of 10 μg L−1 for citalopram and oxazepam, 12.2 μg L−1 for cyamemazine, 100 μg L−1 for fluoxetine, 1,000 μg L−1 for sertraline and >10,000 μg L−1 for valproate. Realistic environmental mixture of the six psychotropic compounds induced disruption of larval locomotor behaviour at concentrations about 10- to 100-fold greater than environmental concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

dpf:

Days postfertilisation

EC:

Effective concentration

LC50 :

Lethal concentrations 50 %

ERS:

Egg rearing solution

LOEC:

Lowest observed effect concentration

NOEC:

No observed effect concentration

PNEC:

Predicted no effect concentration

RQ:

Risk quotient

References

  • Andrew SK, James DS, Geoffrey TG, Timothy CAM, Colin H (2004) A video-based movement analysis system to quantify behavioral stress responses of fish. Water Res 38:3993–4001

    Article  Google Scholar 

  • Baker DR, Kasprzyk-Hordern B (2011) Multi-residue analysis of drugs of abuse in wastewater and surface water by solid-phase extraction and liquid chromatography–positive electrospray ionisation tandem mass spectrometry. J Chromatogr A 12:1620–1631

    Article  Google Scholar 

  • Barjhoux I, Baudrimont M, Morin B, Landi L, Gonzalez P, Cachot J (2012) Effects of copper and cadmium spiked-sediments on embryonic development of Japanese medaka (Oryzias latipes). Ecotoxicol Environ Saf 79:272–282

    Article  CAS  Google Scholar 

  • Benyamina A, Arbus C, Nuss P, Garay RP, Neliat G, Hameg A (2008) Affinity of cyamemazine metabolites for serotonin, histamine and dopamine receptor subtypes. Eur J Pharmacol 578:142–147

    Article  CAS  Google Scholar 

  • Bound JP, Kitsou K, Voulvoulis N (2006) Household disposal of pharmaceuticals and perception of risk to the environment. Environ Toxicol Pharmacol 21:301–307

    Article  CAS  Google Scholar 

  • Bourin M, Dhonnchadha B, Colombel MC, Dib M, Hascoët M (2001) Cyamemazine as an anxiolytic drug on the elevated plus maze and light/dark paradigm in mice. Behav Brain Res 124:87–95

    Article  CAS  Google Scholar 

  • Brodin T, Fick J, Jonsson M, Klaminder J (2013) Dilute concentrations of a psychiatric drug alter behavior of fish from natural populations. Science 339:814–815

    Article  CAS  Google Scholar 

  • Brooks BW, Foran CM, Richards SM, Weston J, Turner PK, Stanley JK, Solomon KR, Slattery M, La Point TW (2003a) Aquatic ecotoxicology of fluoxetine. Toxicol Lett 142:169–183

    Article  CAS  Google Scholar 

  • Brooks BW, Turner PK, Stanley JK, Weston JJ, Glidewell EA, Foran CM, Slattery M, La Point TW, Huggett DB (2003b) Waterborne and sediment toxicity of fluoxetine to select organisms. Chemosphere 52:135–142

    Article  CAS  Google Scholar 

  • Brooks BW, Chambliss CK, Stanley JK, Ramirez A, Banks KE, Johnson RD, Lewis RJ (2005) Determination of select antidepressants in fish from an effluent-dominated stream. Environ Toxicol Chem 24:464–469

    Article  CAS  Google Scholar 

  • Brooks BW, Valenti TW, Perez-Hurtado P, Chambliss CK (2009) Aquatic toxicity of sertraline to Pimephales promelas at environmentally relevant surface water pH. Environ Toxicol Chem 28:2685–2694

    Article  Google Scholar 

  • Champagne DL, Hoefnagels CCM, de Kloet RE, Richardson MK (2010) Translating rodent behavioral repertoire to zebrafish (Danio rerio): relevance for stress research. Behav Brain Res 214:332–342

    Article  Google Scholar 

  • Calisto V, Esteves V (2009) Psychiatric pharmaceuticals in the environment. Chemosphere 77:1257–1274

    Article  CAS  Google Scholar 

  • Calleja MC, Persoone G, Geladi P (1994) Comparative acute toxicity of the first 50 multicenter evaluation of in-vitro cytotoxicity chemicals to aquatic non-vertebrates. Arch Environ Contam Toxicol 26:69–78

    Article  CAS  Google Scholar 

  • Campo-Soria C, Chang Y, Weiss DS (2006) Mechanism of action of benzodiazepines on GABAA receptors. Br J Pharmacol 148:984–990

    Article  CAS  Google Scholar 

  • Cardwell JR, Sorensen PW, Van der Kraak GJ, Liley N (1996) Effect of dominance status on sex hormone levels in laboratory and wild-spawning male trout. Gen Comp Endocrinol 101(3):333–341

    Article  CAS  Google Scholar 

  • Conley JM, Symes SJ, Kindelberger SA, Richards SM (2008) Rapid liquid chromatography-tandem mass spectrometry method for the determination of a broad mixture of pharmaceuticals in surface water. J Chromatogr A 1185:206–215

    Article  CAS  Google Scholar 

  • Cowden J, Padnos B, Hunter D, MacPhail R, Jensen K, Padilla S (2012) Development exposure to valproate and ethanol alters locomotor activity and retino–tectal area in zebrafish embryos. Reprod Toxicol 33:165–173

    Article  CAS  Google Scholar 

  • Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect 107:907–938

    Article  CAS  Google Scholar 

  • EC (2010) Directive 2010/63/EC of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. Off J Eur Communities 273:33–79

    Google Scholar 

  • Emran F, Rihel J, Dowling JE (2008) A behavioral assay to measure responsiveness of zebrafish to changes in light intensities. J Vis Exp 20:e923

    Google Scholar 

  • Farwell A, Nero V, Croft M, Bal P, Dixon DG (2006) Modified Japanese medaka embryo-larval bioassay for rapid determination of developmental abnormalities. Arch Environ Contam Toxicol 51:600–607

    Article  CAS  Google Scholar 

  • Fent K, Weston AA, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat Toxicol 76:122–159

    Article  CAS  Google Scholar 

  • Fong PP, Molnar N (2008) Norfluoxetine induces spawning and parturition in estuarine and freshwater bivalves. Bull Environ Contam Toxicol 81:535–538

    Article  CAS  Google Scholar 

  • Fong PP (1998) Zebra mussel spawning is induced in low concentrations of putative serotonin reuptake inhibitors. Biol Bull 194:143–149

    Article  CAS  Google Scholar 

  • González Alonso S, Catalá M, Maroto RR, Gil JL, de Miguel AG, Valcárcel Y (2010) Pollution by psychoactive pharmaceuticals in the Rivers of Madrid metropolitan area (Spain). Environ Int 36:195–201

    Article  Google Scholar 

  • Gonzalez-Doncel M, de la Pena E, Barrueco C, Hinton DE (2003) Stage sensitivity of medaka (Oryzias latipes) eggs and embryos to permethrin. Aquat Toxicol 62:255–268

    Article  CAS  Google Scholar 

  • Hameg A, Bayle F, Nuss P, Dupuis P, Garay RP, Dib M (2003) Affinity of cyamemazine, an anxiolytic antipsychotic drug, for human recombinant dopamine vs. serotonin receptor subtypes. Biochem Pharmacol 65:435–440

    Article  CAS  Google Scholar 

  • Heberer T (2002) Tracking persistent pharmaceutical residues from municipal sewage to drinking water. J Hydrol 266:175–189

    Article  CAS  Google Scholar 

  • Henry TB, Kwon JW, Armbrust KL, Black MC (2004) Acute and chronic toxicity of five selective serotonin reuptake inhibitors in Ceriodaphnia dubia. Environ Toxicol Chem 23:2229–2233

    Article  CAS  Google Scholar 

  • Hignite C, Azarnoff D (1977) Drugs and drug metabolites as environmental contaminants: chlorophenoxyisobutyrate and salicylic acid in sewage water effluent. Life Sci 20:337–342

    Article  CAS  Google Scholar 

  • Hirsch R, Ternes T, Haberer K, Kratz KL (1999) Occurrence of antibiotics in the aquatic environment. Sci Total Environ 225(1–2):109–118

    Article  CAS  Google Scholar 

  • Irons TD, MacPhail RC, Hunter DL, Padilla S (2010) Acute neuroactive drug exposures alter locomotor activity in larval zebrafish. Neurotoxicol Teratol 32:84–90

    Article  CAS  Google Scholar 

  • Irons TD, Kelly PE, Hunter DL, MacPhail RC, Padilla S (2013) Acute administration of dopaminergic drugs has differential effects on locomotion in larval zebrafish. Pharmacol Biochem Behav 103(4):792–813

    Article  CAS  Google Scholar 

  • Kim JW, Ishibashi H, Yamauchi R, Ichikawa N, Takao Y, Hirano M, Koga M, Arizono K (2009) Acute toxicity of pharmaceutical and personal care products on freshwater crustacean (Thamnocephalus platyurus) and fish (Oryzias latipes). J Toxicol Sci 34(2):227–232

    Article  CAS  Google Scholar 

  • Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36:1202–1211

    Article  CAS  Google Scholar 

  • Lajeunesse A, Gagnon C, Sauve S (2008) Determination of basic antidepressants and their n-desmethylmetabolites in rawsewage and wastewater using solid-phase extraction and liquid chromatography–tandem mass spectrometry. Anal Chem 8:5325–5333

    Article  Google Scholar 

  • Le Bihanic F, Clérandeau C, Menach K, Morin B, Budzinski H, Cousin X, Cachot J (2014) Developmental toxicity of PAH mixtures in fish early life stages. Part II: adverse effects in Japanese medaka. Environ Sci Pollut Res in press.

  • Little EE, Finger SE (1990) Swimming behavior as an indicator of sublethal toxicity in fish. Environ Toxicol Chem 9:13–19

    Article  CAS  Google Scholar 

  • Lockwood B, Bjerke S, Kobayashi K, Guo S (2004) Acute effects of alcohol on larval zebrafish: a genetic system for large-scale screening. Pharmacol Biochem Behav 77:647–654

    Article  CAS  Google Scholar 

  • MacPhail R (2010) Evaluating the behavioral impact of toxicants in larval zebrafish. Neurotoxicol Teratol 32(4):502

    Article  Google Scholar 

  • Metcalfe CD, Miao XS, Koenig BG, Struger J (2003) Distribution of acidic and neutral drugs in surface waters near sewage treatment plants in the lower Great Lakes, Canada. Environ Toxicol Chem 22:2881–2889

    Article  CAS  Google Scholar 

  • Melvin SD, Wilson SP (2013) The utility of behavioral studies for aquatic toxicology testing: a meta-analysis. Chemosphere 93(10):2217–2223

    Article  CAS  Google Scholar 

  • Nakamura Y, Yamamoto H, Sekizawa J, Kondo T, Hirai N, Tatarazako N (2008) The effects of pH on fluoxetine in Japanese medaka (Oryzias latipes): acute toxicity in fish larvae and bioaccumulation in juvenile fish. Chemosphere 70:865–873

    Article  CAS  Google Scholar 

  • Peitsaro N, Kaslin J, Anichtchik OV, Panula P (2003) Modulation of the histaminergic system and behaviour by alphafluoromethylhistidine in zebrafish. J Neurochem 86(2):432–441

    Article  CAS  Google Scholar 

  • Richards SM, Cole SE (2006) A toxicity and hazard assessment of fourteen pharmaceuticals to Xenopus laevis larvae. Ecotoxicology 15(8):647–656

    Article  CAS  Google Scholar 

  • Richendrfer H, Pelkowskia SD, Colwill RM, Creton R (2012) On the edge: pharmacological evidence for anxiety-related behavior in zebrafish larvae. Behav Brain Res 228:99–106

    Article  CAS  Google Scholar 

  • Schnörr SJ, Steenbergen PJ, Richardson MK, Champagne DL (2012) Measuring thigmotaxis in larval zebrafish. Behav Brain Res 228:367–374

    Article  Google Scholar 

  • Schultz MM, Furlong ET (2008) Trace analysis of antidepressant pharmaceuticals and their select degradates in aquatic matrixes by LC/ESI/MS/MS. Anal Chem 80:1756–1762

    Article  CAS  Google Scholar 

  • Simon P, Dupuis R, Costentin J (1994) Thigmotaxis as an index of anxiety in mice. Influence of dopaminergic transmissions. Behav Brain Res 61(1):59–64

    Article  CAS  Google Scholar 

  • Stewart AM, Cachat J, Gaikwad S, Robinson KSL, Gebhardt M, Kalueff AV (2013) Perspectives on experimental models of serotonin syndrome in zebrafish. Neurochem Int 62:893–902

    Article  CAS  Google Scholar 

  • Treit D, Fundytus M (1988) Thigmotaxis as a test for anxiolytic activity in rats. Pharmacol Biochem Behav 31(4):959–962

    Article  CAS  Google Scholar 

  • Wong DT, Bymaster FP, Engleman EA (1995) Prozac (fluoxetine, Lilly 110140), the first selective serotonin uptake inhibitor and an antidepressant drug: twenty years since its first publication. Life Sci 61(12):411–441

    Article  Google Scholar 

  • Wu M, Khan IA, Dasmahapatra AK (2012) Valproate-induced teratogenesis in Japanese rice fish (Oryzias latipes) embryogenesis. Comp Biochem Phys C 155(3):528–537

    CAS  Google Scholar 

  • Zellner D, Padnos B, Hunter DL, Macphail RC, Padilla S (2011) Rearing conditions differentially affect the locomotor behavior of larval zebrafish, but not their response to valproate-induced developmental neurotoxicity. Neurotoxicol Teratol 33(6):674–679

    Article  CAS  Google Scholar 

  • Zenker A, Cicero MR, Prestinaci F, Bottoni P, Carere M (2014) Bioaccumulation and biomagnification potential of pharmaceuticals with a focus to the aquatic environment. J Environ Manag 133:378–387

    Article  CAS  Google Scholar 

  • Zuccato E, Calamari D, Natangelo M, Fanelli R (2000) Presence of therapeutic drugs in the environment. Lancet 355(9217):1789–1790

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Aquitaine region (Medic’eau project) and the French Agency for Food, Environmental and Occupational Health and Safety ANSES (Psycheau project). We would like to thank Mr James Emery for his help in editing this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Cachot.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 61 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiffre, A., Clérandeau, C., Dwoinikoff, C. et al. Psychotropic drugs in mixture alter swimming behaviour of Japanese medaka (Oryzias latipes) larvae above environmental concentrations. Environ Sci Pollut Res 23, 4964–4977 (2016). https://doi.org/10.1007/s11356-014-3477-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3477-4

Keywords

Navigation