Skip to main content
Log in

A comparative study of abiological granular sludge (ABGS) formation in different processes for zinc removal from wastewater

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Abiological granular sludge (ABGS) formation is a potential and facile strategy for improving sludge settling performance during zinc removal from wastewater using chemical precipitation. In this study, the effect of pH, seed dosage, and flocculant dosage on ABGS formation and treated water quality was investigated. Results show that settling velocity of ABGS can reach up to 4.00 cm/s under optimal conditions, e.g., pH of 9.0, zinc oxide (ZnO) seeds dosage of 1.5 g/l, and polyacrylamide (PAM) dosage of 10 mg/l. More importantly, ABGS formation mechanism was investigated in NaOH precipitation process and compared with that in bio-polymer ferric sulfate (BPFS)–NaOH precipitation process regarding their sludge structure and composition. In the NaOH precipitation process, ABGS formation depends on some attractions between particles, such as van der Waals attraction and bridging attraction. However, during the BPFS–NaOH sludge formation process, steric repulsion becomes dominant due to the adsorption of BPFS on ZnO seeds. This repulsion further causes extremely loose structure and poor settling performance of BPFS–NaOH sludge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Baltpurvins KA, Burns RC, Lawrance GA, Stuart AD (1996) Use of the solubility domain approach for the modeling of the hydroxide precipitation of heavy metals from wastewater. Environ Sci Technol 30(5):1493–1499

    Article  CAS  Google Scholar 

  • Chen Q, Luo Z, Hills C, Xue G, Tyrer M (2009) Precipitation of heavy metals from wastewater using simulated flue gas: sequent additions of fly ash, lime and carbon dioxide. Water Res 43(10):2605–2614

    Article  CAS  Google Scholar 

  • Duan J, Gregory J (2003) Coagulation by hydrolysing metal salts. Adv Colloid Interf 100–102:475–502

    Article  Google Scholar 

  • Ferretti R, Stoll S, Zhang J, Buffle J (2003) Flocculation of hematite particles by a comparatively large rigid polysaccharide: schizophyllan. J Colloid Interf Sci 266(2):328–338

    Article  CAS  Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92(3):407–418

    Article  CAS  Google Scholar 

  • Gregory J (2006) Particles in water: properties and processes. CRC Press, Boca Raton

    Google Scholar 

  • Gregory J, Barany S (2011) Adsorption and flocculation by polymers and polymer mixtures. Adv Colloid Interf 169(1):1–12

    Article  CAS  Google Scholar 

  • He H (2009) A technology of heavy metal wastewater zero emission and its application in Zhuzhou smelter research. Hunan Nonferrous Metals 25(5):43–47 (in Chinese)

    Google Scholar 

  • Hulshoff Pol LW, de Castro Lopes SI, Lettinga G, Lens PNL (2004) Anaerobic sludge granulation. Water Res 38(6):1376–1389

    Article  CAS  Google Scholar 

  • Jin B, Wil ENBM, Lant P (2003) A comprehensive insight into floc characteristics and their impact on compressibility and settleability of activated sludge. Chem Eng J 95(1–3):221–234

    Article  CAS  Google Scholar 

  • Jitianu M, Goia DV (2007) Zinc oxide colloids with controlled size, shape, and structure. J Colloid Interf Sci 309(1):78–85

    Article  CAS  Google Scholar 

  • Kurniawan TA, Chan GYS, Lo W, Babel S (2006) Physico-chemical treatment techniques for wastewater laden with heavy metals. Chem Eng J 118(1–2):83–98

    Article  CAS  Google Scholar 

  • Liimatainen H, Sirviö J, Sundman O, Hormi O, Niinimäki J (2012) Use of nanoparticular and soluble anionic celluloses in coagulation–flocculation treatment of kaolin suspension. Water Res 46(7):2159–2166

    Article  CAS  Google Scholar 

  • Lin YM, Lotti T, Sharma PK, van Loosdrecht MCM (2013a) Apatite accumulation enhances the mechanical property of anammox granules. Water Res 47(13):4556–4566

    Article  CAS  Google Scholar 

  • Lin YM, Sharma PK, van Loosdrecht MCM (2013b) The chemical and mechanical differences between alginate-like exopolysaccharides isolated from aerobic flocculent sludge and aerobic granular sludge. Water Res 47(1):57–65

    Article  CAS  Google Scholar 

  • Liu H (2012) Study of heavy metals waste water treatment with biological agent. Hunan Nonferrous Metals 28(5):53–57 (in Chinese)

    CAS  Google Scholar 

  • Liu Q, Li Y, Zhang J, Chi Y, Ruan X, Liu J, Qian G (2011) Effective removal of zinc from aqueous solution by hydrocalumite. Chem Eng J 175:33–38

    Article  CAS  Google Scholar 

  • Lu H, Zheng P, Ji Q, Zhang H, Ji J, Wang L, Ding S, Chen T, Zhang J, Tang C, Chen J (2012) The structure, density and settlability of anammox granular sludge in high-rate reactors. Bioresour Technol 123:312–317

    Article  CAS  Google Scholar 

  • Mackie AL, Walsh ME (2012) Bench-scale study of active mine water treatment using cement kiln dust (CKD) as a neutralization agent. Water Res 46(2):327–334

    Article  CAS  Google Scholar 

  • Manfredi L, Hill RJ, Van de Ven TGM (2011) Bridging flocculation of PEI-functionalized latex particles using nanocrystalline cellulose. J Colloid Interf Sci 360(1):117–123

    Article  CAS  Google Scholar 

  • Mer VKL, Healy TW (1963) The role of filtration in investigating flocculation and redispersion of colloidal dispersions. J Phys Chem 67(11):2417–2420

    Article  Google Scholar 

  • Oliveira APA, Hochepied J, Grillon F, Berger M (2003) Controlled precipitation of zinc oxide particles at room temperature. Chem Mater 15(16):3202–3207

    Article  CAS  Google Scholar 

  • Pang FM, Kumar P, Teng TT, Mohd Omar AK, Wasewar KL (2011) Removal of lead, zinc and iron by coagulation–flocculation. J Taiwan Inst Chem Eng 42(5):809–815

    Article  CAS  Google Scholar 

  • Parsons WA, Heukelekian H (1954) Sludge return for control of scale formation following lime neutralization. Ind Eng Chem 46(7):1503–1507

    Article  CAS  Google Scholar 

  • Pivokonsky M, Safarikova J, Bubakova P, Pivokonska L (2012) Coagulation of peptides and proteins produced by Microcystis aeruginosa: interaction mechanisms and the effect of Fe-peptide/protein complexes formation. Water Res 46(17):5583–5590

    Article  CAS  Google Scholar 

  • Raula M, Rashid MH, Paira TK, Dinda E, Mandal TK (2010) Ascorbate-assisted growth of hierarchical ZnO nanostructures: sphere, spindle, and flower and their catalytic properties. Langmuir 26(11):8769–8782

    Article  CAS  Google Scholar 

  • Sathyamoorthy S, Moggridge GD, Hounslow MJ (2001) Particle formation during anatase precipitation of seeded titanyl sulfate solution. Cryst Growth Des 1(2):123–129

    Article  CAS  Google Scholar 

  • Schmidt JE, Ahring BK (1996) Granular sludge formation in upflow anaerobic sludge blanket (UASB) reactors. Biotechnol Bioeng 49(3):229–246

    Article  CAS  Google Scholar 

  • Socrates G, Socrates G (2001) Infrared and Raman characteristic group frequencies: tables and charts. Jonh Wiley & Sons, Chichester

    Google Scholar 

  • Song C, Sun X, Xing S, Xia P, Shi Y, Wang S (2013) Characterization of the interactions between tetracycline antibiotics and microbial extracellular polymeric substances with spectroscopic approaches. Environ Sci Pollut Res. doi:10.1007/s11356-013-2070-6

    Google Scholar 

  • Tu Y, Chang C, You C, Wang S (2012) Treatment of complex heavy metal wastewater using a multi-staged ferrite process. J Hazard Mater 209–210:379–384

    Article  Google Scholar 

  • Vincent B (2012) Early (pre-DLVO) studies of particle aggregation. Adv Colloid Interf 170(1–2):56–67

    Article  CAS  Google Scholar 

  • Wang H, Cui J, Jiang W (2011a) Synthesis, characterization and flocculation activity of novel Fe(OH)3–polyacrylamide hybrid polymer. Mater Chem Phys 130(3):993–999

    Article  CAS  Google Scholar 

  • Wang H, Min X, Chai L, Shu Y (2011b) Biological preparation and application of poly-ferric sulfate flocculant. Trans Nonferr Metals Soc 21(11):2542–2547

    Article  CAS  Google Scholar 

  • Wang Q, Chai L, Wang Y, Li Q, Yang Z (2010) Novel technology for wastewater treatment by biologics in hydrometallurgical processes of lead–zinc, 2010 TMS Annual Meeting & Exhibition, Seattle, pp. 675–681

  • Xing Z, Sun D, Yu X (2010) Treatment of antibiotic fermentation wastewater using the combined polyferric sulfate coagulation with Fenton-like oxidation. Environ Prog Sust Energ 29(1):42–51

    CAS  Google Scholar 

  • Yan X, Chai L, Li Q (2013) Effect of precipitant additives on the sludge settling and compacting performance for heavy metal wastewater treatment. Sep Sci Technol 48(10):1442–1449

    Article  CAS  Google Scholar 

  • Yan X, Li Q, Chai L, Yang B, Wang Q (2014) Formation of abiological granular sludge — a facile and bioinspired proposal for improving sludge settling performance during heavy metal wastewater treatment. Chemosphere 113:36–41

    Article  CAS  Google Scholar 

  • Zhang Z, Zhang J, Zhao J, Xia S (2013) Effect of short-time aerobic digestion on bioflocculation of extracellular polymeric substances from waste activated sludge. Environ Sci Pollut Res. doi:10.1007/s11356-013-1887-3

    Google Scholar 

  • Zhu L, Qi H, Lv M, Kong Y, Yu Y, Xu X (2012) Component analysis of extracellular polymeric substances (EPS) during aerobic sludge granulation using FTIR and 3D-EEM technologies. Bioresour Technol 124:455–459

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Program for Changjiang Scholars (T2011116); National High Technology Research and Development Program of China (2011AA061001); National Natural Science Foundation of China (51304251); Postdoctoral Natural Science Foundation of China (2013 M542141) and Postdoctoral Science Foundation of Central South University for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingzhu Li.

Additional information

Responsible editor: Angeles Blanco

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chai, L., Yan, X., Li, Q. et al. A comparative study of abiological granular sludge (ABGS) formation in different processes for zinc removal from wastewater. Environ Sci Pollut Res 21, 12436–12444 (2014). https://doi.org/10.1007/s11356-014-3184-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3184-1

Keywords

Navigation