Skip to main content
Log in

Influence of aqueous environment on agglomeration and dissolution of thiol-functionalised mesoporous silica-coated magnetite nanoparticles

  • Environmental Science and Pollution Sensing, Monitoring, Modeling and Remediation
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The purpose of the present research work is to investigate the stability and dissolution of magnetite (Fe3O4) nanoparticles (NPs) and thiol-functionalised mesoporous silica-coated magnetite NPs (TF-SCMNPs). The state of NPs in an aqueous environment was investigated under different pH conditions. Changes in the NPs’ mean diameter due to aggregation were measured over a specific time. The effects of contact time and pH on the dissolution of NPs were also investigated. In order to avoid possible aggregation, Fe3O4 NPs were coated with silica and functionalised further with thiol organic groups. These methods imparted excellent stability to magnetite NPs in an aqueous medium over a wide range of pH values with reasonable hydrodynamic size. The organic group bound magnetite NPs allowed these particles to circulate over a long time in the aqueous system, and particle aggregation and sedimentation did not occur. The trend of decreasing zeta potential was observed after grafting thiol onto the surface of the SCMNPs. The results also revealed that silica exhibited a noteworthy efficient in eliminating the pH dependence and enhancing the NP stability of SCMNPs and SH-SCMNPs in aqueous medium. On the other hand, the dissolution of Fe3O4 NPs was found to be detrimental at pH 2.0 and 4.0 or had a long contact time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences, and uses. Vch Verlagsgesellschaft Mbh

  • Diallo M, Street A, Sustich R, Duncan J, Savage N (2008) Nanotechnology Applications for Clean Water: Solutions for Improving Water Quality, William Andrew, Norwich, New York

  • Elzey S, Grassian VH (2010) Agglomeration, isolation and dissolution of commercially manufactured silver nanoparticles in aqueous environments. J Nanoparticle Res 12:1945–1958

    Article  CAS  Google Scholar 

  • García-Otero J, Porto M, Rivas J, Bunde A (2000) Influence of dipolar interaction on magnetic properties of ultrafine ferromagnetic particles. Phys Rev Lett 84:167–170

    Article  Google Scholar 

  • Guardia P, Batlle-Brugal B, Roca A, Iglesias O, Morales M, Serna C, Labarta A, Batlle X (2007) Surfactant effects in magnetite nanoparticles of controlled size. J Magn Magn Mater 316:e756–e759

    Article  CAS  Google Scholar 

  • Guthrie CP, Reardon EJ (2008) Metastability of MCM-41 and Al-MCM-41. J Phys Chem A 112:3386–3390

    Article  CAS  Google Scholar 

  • Hakami O, Zhang Y, Banks CJ (2012) Thiol-functionalised mesoporous silica-coated magnetite nanoparticles for high efficiency removal and recovery of Hg from water. Water Res 46:3913–3922

    Article  CAS  Google Scholar 

  • Hamley I (2003) Nanotechnology with soft materials. Angew Chem Int Ed 42:1692–1712

    Article  CAS  Google Scholar 

  • Hu J, Lo I, Chen G (2004) Removal of Cr (VI) by magnetite nanoparticle. Water Sci Technol J Int Assoc Water Pollut Res 50:139

    CAS  Google Scholar 

  • Ito T, Sun L, Bevan MA, Crooks RM (2004) Comparison of nanoparticle size and electrophoretic mobility measurements using a carbon-nanotube-based coulter counter, dynamic light scattering, transmission electron microscopy, and phase analysis light scattering. Langmuir 20:6940–6945

    Article  CAS  Google Scholar 

  • Kanel SR, Manning B, Charlet L, Choi H (2005) Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39:1291–1298

    Article  CAS  Google Scholar 

  • Kraemer SM (2004) Iron oxide dissolution and solubility in the presence of siderophores. Aquat Sci Res Across Boundaries 66:3–18

    Article  CAS  Google Scholar 

  • Lee CH, Park SH, Chung W, Kim JY, Kim SH (2011) Preparation and characterization of surface modified silica nanoparticles with organo-silane compounds. Colloids Surf A Physicochem Eng Asp 384:318–322

    Article  CAS  Google Scholar 

  • Lu AH, Salabas EL, Schuth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244

    Article  CAS  Google Scholar 

  • Mehendale B, Shende R, Subramanian S, Gangopadhyay S, Redner P, Kapoor D, Nicolich S (2006) Nanoenergetic composite of mesoporous iron oxide and aluminum nanoparticles. J Energetic Mater 24:341–360

    Article  CAS  Google Scholar 

  • Meunier V, Nicolai T, Durand D (2001) Structure of aggregating κ-carrageenan fractions studied by light scattering. Int J Biol Macromol 28:157–165

    Article  CAS  Google Scholar 

  • Mohapatra S, Mallick S, Maiti T, Ghosh S, Pramanik P (2007) Synthesis of highly stable folic acid conjugated magnetite nanoparticles for targeting cancer cells. Nanotechnology 18:385102

    Article  Google Scholar 

  • Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM (2008) Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 101:239–253

    Article  CAS  Google Scholar 

  • Neamtu J, Jitaru I, Malaeru T, Georgescu G, Kappel W, Alecu VV (2005) Synthesis and properties of magnetic nanoparticles with potential applications in cancer diagnostic. Nanotechnology 1:222–224

    CAS  Google Scholar 

  • Pankhurst QA, Connolly J, Jones S, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:R167

    Article  CAS  Google Scholar 

  • Pham ALT, Doyle FM, Sedlak DL (2011) Inhibitory effect of dissolved silica on the H2O2 decomposition by iron(III) and manganese(IV) oxides: implications for H2O2-based in situ chemical oxidation. Environ Sci Technol 46:1055–1062

    Article  Google Scholar 

  • Salmimies R, Mannila M, Kallas J, Häkkinen A (2011) Acidic dissolution of magnetite: experimental study on the effects of acid concentration and temperature. Clay Clay Miner 59:136–146

    Article  CAS  Google Scholar 

  • Schladt TD, Schneider K, Schild H, Tremel W (2011) Synthesis and bio-functionalization of magnetic nanoparticles for medical diagnosis and treatment. Dalton Trans 40:6315–6343

    Article  CAS  Google Scholar 

  • Schwertmann U (1991) Solubility and dissolution of iron oxides. Plant Soil 130:1–25

    Article  CAS  Google Scholar 

  • Shipley HJ, Yean S, Kan AT, Tomson MB (2009) Adsorption of arsenic to magnetite nanoparticles: effect of particle concentration, pH, ionic strength, and temperature. Environ Toxicol Chem 28:509–515

    Article  CAS  Google Scholar 

  • Stumm W, Huper H, Champlin RL (1967) Formulation of polysilicates as determined by coagulation effects. Environ Sci Technol 1:221–227

    Article  CAS  Google Scholar 

  • Tombacz E, Filipcsei G, Szekeres M, Gingl Z (1999) Particle aggregation in complex aquatic systems. Colloids Surf A Physicochem Eng Asp 151:233–244

    Article  CAS  Google Scholar 

  • Vaidya S, Thaplyal P, Ganguli A (2011) Enhanced functionalization of Mn2O3@ SiO2 core–shell nanostructures. Nanoscale Res Lett 6:1–6

    Article  Google Scholar 

  • WHO (2011) Guidelines for drinking-water quality, 4th edn. WHO, Geneva

    Google Scholar 

  • Wu P, Zhu J, Xu Z (2004) Template‐assisted synthesis of mesoporous magnetic nanocomposite particles. Adv Funct Mater 14:345–351

    Article  CAS  Google Scholar 

  • Zhang L, He R, Gu HC (2006) Oleic acid coating on the monodisperse magnetite nanoparticles. Appl Surf Sci 253:2611–2617

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Othman Hakami.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hakami, O., Zhang, Y. & Banks, C.J. Influence of aqueous environment on agglomeration and dissolution of thiol-functionalised mesoporous silica-coated magnetite nanoparticles. Environ Sci Pollut Res 22, 3257–3264 (2015). https://doi.org/10.1007/s11356-014-3085-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3085-3

Keywords

Navigation