Skip to main content

Advertisement

Log in

Degradation of aqueous Rhodamine B by plasma generated along the water surface and its enhancement using nanocrystalline Fe-, Mn-, and Ce-doped TiO2 films

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The degradation of aqueous Rhodamine B (RhB) was examined using a dual-channel spark switch module designed to regulate the steepness of pulsed high voltage with microsecond rise time. Depending on the energy per pulse, a spark along the water surface (SPWS) or streamer along the water surface (STWS) was formed. STWS was found to have a better degradation effect and energy efficiency toward RhB than SPWS at the same power; however, addition of H2O2 amounts resulted in increased degradation, the effect being more pronounced using SPWS. The initial concentration of RhB also appeared to influence the rate constant of the degradation reaction. Furthermore, TiO2 films doped with Fe, Mn, and Ce were found to enhance the degradation performance of plasma. A possible reaction mechanism of plasma formation along the water surface was concluded by determination of the main inorganic products in the liquid and gas phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Alwash AH, Abdullah AZ, Ismail N (2012) Zeolite Y encapsulated with Fe-TiO2 for ultrasound-assisted degradation of amaranth dye in water. J Hazard Mater 233–234:184–193

    Article  Google Scholar 

  • Bagwasi S, Tian B, Zhang J, Nasir M (2013) Synthesis, characterization and application of bismuth and boron Co-doped TiO2: a visible light active photocatalyst. Chem Eng J 217:108–118

    Article  CAS  Google Scholar 

  • Barras A, Cordier S, Boukherroub R (2012) Fast photocatalytic degradation of rhodamine B over [Mo6Br8(N3)6]2− cluster units under sun light irradiation. Appl Catal, B 123–124:1–8

    Article  Google Scholar 

  • Burlica R, Shih KY, Locke BR (2010) Formation of H2 and H2O2 in a water-spray gliding arc nonthermal plasma reactor. Ind Eng Chem Res 49(14):6342–6349

    Article  CAS  Google Scholar 

  • Cataldo F, Compagnini G, D’Urso L, Mita V, Strazzulla G, Ursini O, Angelini G (2008) Adsorption of dinitrogen tetroxide (N2O4) on multi‐walled carbon nanotubes (MWCNTs). Fullerenes, Nanotubes, Carbon Nonstructures 16(2):154–164

    Article  CAS  Google Scholar 

  • Chiou C, Juang R (2007) Photocatalytic degradation of phenol in aqueous solutions by Pr-doped TiO2 nanoparticles. J Hazard Mater 149(1):1–7

    Article  CAS  Google Scholar 

  • Colmenares JC, Magdziarz A, Kurzydlowski K, Grzonka J, Chernyayeva O, Lisovytskiy D (2013) Low-temperature ultrasound-promoted synthesis of Cr-TiO2-supported photocatalysts for valorization of glucose and phenol degradation from liquid phase. Appl Catal B-Environ 134:136–144

    Article  Google Scholar 

  • Dojčinović BP, Roglić GM, Obradović BM, Kuraica MM, Kostić MM, Nešić J, Manojlović DD (2011) Decolorization of reactive textile dyes using water falling film dielectric barrier discharge. J Hazard Mater 192(2):763–771

    Article  Google Scholar 

  • Ghezzar MR, Abdelmalek F, Belhadj M, Benderdouche N, Addou A (2007) Gliding arc plasma assisted photocatalytic degradation of anthraquinonic acid green 25 in solution with TiO2. Appl Catal, B 72(3–4):304–313

    Article  CAS  Google Scholar 

  • Guo J, Ma B, Yin A, Fan K, Dai W (2011) Photodegradation of rhodamine B and 4-chlorophenol using plasmonic photocatalyst of Ag–AgI/Fe3O4@SiO2 magnetic nanoparticle under visible light irradiation. Appl Catal, B 101(3–4):580–586

    Article  CAS  Google Scholar 

  • Gupta, S. B (2007) Investigation of a physical disinfection process based on pulsed underwater corona discharges. In Forschungszentrum Karlsruhe

  • Hu H, Xiao W, Yuan J, Shi J, He D, Shangguan W (2008) High photocatalytic activity and stability for decomposition of gaseous acetaldehyde on TiO2/Al2O3 composite films coated on foam nickel substrates by sol-gel processes. J Sol-Gel Sci Technol 45(1):1–8

    Article  CAS  Google Scholar 

  • Jan ZY, Ren WZ, Wang X (2011) Study on the decolorizing of Rhodamine B by the liquid discharge on Ti anode. Computer Science and Service System, International Conference on 2011, pp 3607–3610

  • Kaji T, Kawashima T, Yamamoto C, Sakamoto M (1992) Rhodamine B inhibits collagen synthesis by human lip fibroblasts in culture. Toxicol Lett 61(1):81–87

    Article  CAS  Google Scholar 

  • Kolb JF, Mohamed A, Price RO, Swanson RJ, Bowman A, Chiavarini RL, Stacey M, Schoenbach KH (2008) Cold atmospheric pressure air plasma jet for medical applications. Appl Phys Lett 92(24):241501

    Article  Google Scholar 

  • Kušić H, Koprivanac N, Locke BR (2005) Decomposition of phenol by hybrid gas/liquid electrical discharge reactors with zeolite catalysts. J Hazard Mater 125(1–3):190–200

    Google Scholar 

  • Le TT, Akhtar MS, Park DM, Lee JC, Yang O (2012) Water splitting on Rhodamine-B dye sensitized Co-doped TiO2 catalyst under visible light. Appl Catal, B 111–112:397–401

    Article  Google Scholar 

  • Lee H, Park SH, Park YK, Kim BH, Kim SJ, Jung SC (2013) Rapid destruction of the Rhodamine B using TiO2 photocatalyst in the liquid phase plasma. Chem Central J 7(1):156

    Article  Google Scholar 

  • Li W, Zhao S, Qi B, Du Y, Wang X, Huo M (2009) Fast catalytic degradation of organic dye with air and MoO3:Ce nanofibers under room condition. Appl Catal, B 92(3–4):333–340

    Article  CAS  Google Scholar 

  • Lu Q, Gao W, Du J, Zhou L, Lian Y (2012) Discovery of environmental Rhodamine B contamination in paprika during the vegetation process. J Agric Food Chem 60(19):4773–4778

    Article  CAS  Google Scholar 

  • Manoj Kumar Reddy P, Rama Raju B, Karuppiah J, Linga Reddy E, Subrahmanyam C (2013) Degradation and mineralization of methylene blue by dielectric barrier discharge non-thermal plasma reactor. Chem Eng J 217:41–47

    Article  CAS  Google Scholar 

  • Narengerile H, Yuan M, Watanabe T (2011) Decomposition mechanism of phenol in water plasmas by DC discharge at atmospheric pressure. Chem Eng J 168(3):985–993

    Article  CAS  Google Scholar 

  • Ni GH, Zhao GX, Jiang YM, Li JX, Meng YD, Wang XK (2013) Steam plasma jet treatment of phenol in aqueous solution at atmospheric pressure. Plasma Processes Polym 10(4):353–363

    Article  CAS  Google Scholar 

  • Noeske M, Degenhardt J, Strudthoff S, Lommatzsch U (2004) Plasma jet treatment of five polymers at atmospheric pressure: surface modifications and the relevance for adhesion. Int J Adhes Adhes 24(2):171–177

    Article  CAS  Google Scholar 

  • Othman I, Mohamed RM, Ibrahem FM (2007) Study of photocatalytic oxidation of indigo carmine dye on Mn-supported TiO2. J Photochem Photobiol, A 189(1):80–85

    Article  CAS  Google Scholar 

  • Parshetti GK, Doong R (2011) Synergistic effect of nickel ions on the coupled dechlorination of trichloroethylene and 2,4-dichlorophenol by Fe/TiO2 nanocomposites in the presence of UV light under anoxic conditions. Water Res 45(14):4198–4210

    CAS  Google Scholar 

  • Sato M, Tokutake T, Ohshima T, Sugiarto AT (2008) Aqueous phenol decomposition by pulsed discharges on the water surface. Ind Appl, IEEE Trans 44(5):1397–1402

    Article  CAS  Google Scholar 

  • Shaban YA, El Sayed MA, El Maradny AA, Al Farawati RK, Al Zobidi MI (2013) Photocatalytic degradation of phenol in natural seawater using visible light active carbon modified (CM)-n-TiO2 nanoparticles under UV light and natural sunlight illuminations. Chemosphere 91(3):307–313

    Article  CAS  Google Scholar 

  • Shiota H, Itabashi H, Satoh K, Itoh H (2013) Phenol decomposition by pulsed-discharge plasma above a water surface in oxygen and argon atmosphere. Electr Eng Japan 184(1):1–9

    Article  Google Scholar 

  • Smith DM, Welch WF, Graham SM, Chughtai AR, Wicke BG, Grady KA (1988) Reaction of nitrogen oxides with black carbon: an FT-IR study. Appl Spectrosc 42(4):674–680

    Article  CAS  Google Scholar 

  • Souzanchi S, Vahabzadeh F, Fazel S, Hosseini SN (2013) Performance of an annular sieve-plate column photoreactor using immobilized TiO2 on stainless steel support for phenol degradation. Chem Eng J 223:268–276

    Article  CAS  Google Scholar 

  • Sugiarto AT, Ohshima T, Sato M (2002) Advanced oxidation processes using pulsed streamer corona discharge in water. Thin Solid Films 20(1):174–178

    Article  Google Scholar 

  • Sugiarto AT, Ito S, Ohshima T, Sato M, Skalny JD (2003) Oxidative decoloration of dyes by pulsed discharge plasma in water. J Electrost 58(1–2):135–145

    Article  CAS  Google Scholar 

  • Tada H, Tanaka M (1997) Dependence of TiO2 photocatalytic activity upon its film thickness. Langmuir 13(2):360–364

    Article  CAS  Google Scholar 

  • Tryba B (2008) Immobilization of TiO2 and Fe–C–TiO2 photocatalysts on the cotton material for application in a flow photocatalytic reactor for decomposition of phenol in water. J Hazard Mater 151(2–3):623–627

    Article  CAS  Google Scholar 

  • Wang L, Jiang X (2009) Unusual catalytic effects of iron salts on phenol degradation by glow discharge plasma in aqueous solution. J Hazard Mater 161(2–3):926–932

    CAS  Google Scholar 

  • Wang H, Li J, Quan X, Wu Y, Li G, Wang F (2007) Formation of hydrogen peroxide and degradation of phenol in synergistic system of pulsed corona discharge combined with TiO2 photocatalysis. J Hazard Mater 141(1):336–343

    Article  CAS  Google Scholar 

  • Yu J, Zhao X, Zhao Q (2000) Effect of film thickness on the grain size and photocatalytic activity of the sol-gel derived nanometer TiO2 thin films. J Mater Sci Lett 19(12):1015–1017

    Article  CAS  Google Scholar 

  • Zhang R, Zhang C, Cheng X, Wang L, Wu Y, Guan Z (2007) Kinetics of decolorization of azo dye by bipolar pulsed barrier discharge in a three-phase discharge plasma reactor. J Hazard Mater 142(1–2):105–110

    Article  CAS  Google Scholar 

  • Zhang Y, Xin Q, Cong Y, Wang Q, Jiang B (2013) Application of TiO2 nanotubes with pulsed plasma for phenol degradation. Chem Eng J 215–216:261–268

    Article  Google Scholar 

  • Zheng C, Xu Y, Huang H, Zhang Z, Liu Z, Yan K (2013) Water disinfection by pulsed atmospheric air plasma along water surface. Am Inst Chem Eng 59(5):1458–1467

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is sponsored by the National Science Foundation of China (No. 11005091) and Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifan Huang.

Additional information

Responsible editor: Angeles Blanco

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Li, Y., Zhu, A. et al. Degradation of aqueous Rhodamine B by plasma generated along the water surface and its enhancement using nanocrystalline Fe-, Mn-, and Ce-doped TiO2 films. Environ Sci Pollut Res 21, 9948–9958 (2014). https://doi.org/10.1007/s11356-014-2982-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-2982-9

Keywords

Navigation