Skip to main content

Advertisement

Log in

Enhancing phytoextraction of Cd by combining poplar (clone “I-214”) with Pseudomonas fluorescens and microbial consortia

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The plant–microorganism combinations may contribute to the success of phytoextraction of heavy metal-polluted soil. The purpose of this study was to investigate the effects of cadmium (Cd) soil concentration on selected physiological parameters of the poplar clone “I-214” inoculated at root level with a strain (BT4) of Pseudomonas fluorescens and a commercial product based on microbial consortia (Micosat F Fito®). Plants were subjected to Cd treatment of 40 mg kg−1 in greenhouse. The effects of plant–microbe interactions, plant growth, leaf physiology, and microbial activity were periodically monitored. Metal concentration and translocation factors in plant tissues proved enhanced Cd uptake in roots of plants inoculated with P. fluorescens and transfer to shoots in plants inoculated with Micosat F Fito®, suggesting a promising strategy for using microbes in support of Cd uptake. Plant–microbe integration increased total removal of Cd, without interfering with plant growth, while improving the photosynthetic capacity. Two major mechanisms of metal phytoextraction inducted by microbial inoculation may be suggested: improved Cd accumulation in roots inoculated with P. fluorescens, implying phytostabilization prospective and high Cd transfer to shoots of inoculated plants, outlining enhanced metal translocation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ali H, Khan E, Sajad MA (2013) Review. Phytoremediation of heavy metals—concepts and applications. Chemosphere 91:869–881

    Article  CAS  Google Scholar 

  • Babu AG, Kim JD, Oh BT (2013) Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. J Hazard Mater 250–251:477–483

    Article  Google Scholar 

  • Berg G, Opelt K, Zachow C, Lottmann J, Gotz M, Costa R, Smalla K (2006) The rhizosphere effect on bacteria antagonistic towards the pathogenic fungus Verticillium differs depending on plant species and site. FEMS Microbiol Ecol 56:250–261

    Article  CAS  Google Scholar 

  • Borrero C, Ordovása J, Trillasb MI, Avilésa M (2006) Tomato Fusarium wilt suppressiveness. The relationship between the organic plant growth media and their microbial communities as characterised by Biolog®. Soil Biol Biochem 38:1631–1637

    Article  CAS  Google Scholar 

  • Castagna A, Di Baccio D, Tognetti R, Ranieri A, Sebastiani L (2013) Differential ozone sensitivity interferes with cadmium stress in poplar clones. Biol Plant 57:313–324

    Article  CAS  Google Scholar 

  • Cicatelli A, Lingua G, Todeschini V, Biondi S, Torrigiani P, Castiglione S (2010) Arbuscular mycorrhizal fungi restore normal growth in a white poplar clone grown on heavy metal-contaminated soil, and this is associated with upregulation of foliar metallothionein and polyamine biosynthetic gene expression. Ann Bot 106:791–802

    Article  CAS  Google Scholar 

  • Cicatelli A, Lingua G, Todeschini V, Biondi S, Torrigiani P, Castiglione S (2012) Arbuscular mycorrhizal fungi modulate the leaf transcriptome of a Populus alba L. clone grown on a zinc and copper-contaminated soil. Environ Exp Bot 75:25–35

    Article  CAS  Google Scholar 

  • Cocozza C, Minnocci A, Tognetti R, Iori V, Zacchini M, Scarascia Mugnozza G (2008) Distribution and concentration of cadmium in root tissue of Populus alba determined by scanning electron microscopy and energy-dispersive x-ray microanalysis. iForest 1:96–103

    Article  Google Scholar 

  • Cocozza C, Maiuro L, Tognetti R (2011) Mapping cadmium distribution in roots of Salicaceae through scanning electron microscopy with x-ray microanalysis. iForest 4:113–120

    Article  Google Scholar 

  • De Curtis F, Lima G, Vitullo D, De Cicco V (2010) Biocontrol of Rhizoctonia solani and Sclerotium rolfsii on tomato by delivering antagonistic bacteria through a drip irrigation system. Crop Prot 29:663–670

    Article  Google Scholar 

  • De Maria S, Rivelli R, Kuffner M, Sessitsch A, Wenzel WW, Gorfer M, Strauss J, Puschenreiter M (2011) Interactions between accumulation of trace elements and macronutrients in Salix caprea after inoculation with rhizosphere microorganisms. Chemosphere 84:1256–1261

    Article  Google Scholar 

  • De Paolis MR, Pietrosanti L, Capotorti G, Massacci A, Lippi D (2011) Salicaceae establishment in a heavy metal-contaminated site revealed by eco-physiological characterization of the culturable soil bacterial fraction. Water Air Soil Pollut 216:505–512

    Article  Google Scholar 

  • Di Lonardo S, Capuana M, Arnetoli M, Gabbrielli R, Gonnelli C (2011) Exploring the metal phytoremediation potential of three Populus alba L. clones using an in vitro screening. Environ Sci Pollut Res 18:82–90

    Article  CAS  Google Scholar 

  • Dickmann DI (1971) Photosynthesis and respiration by developing leaves of cottonwood (Populus deltoides Bartr.). Bot Gaz 132:252–259

    Article  Google Scholar 

  • Dos Santos Utmazian M, Schweiger P, Sommer P, Gorfer M, Strauss J, Wenzel WW (2007) Influence of Cadophora finlandica and other microbial treatments on cadmium and zinc uptake in willows grown on polluted soil. Plant Soil Environ 53:158–166

    Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643

    Article  CAS  Google Scholar 

  • Gilmore AM, Hazlett TL, Debrunner PG, Govindjee (1996) Comparative time-resolved photosystem II chlorophyll a fluorescence analyses reveal distinctive differences between photoinhibitory reaction center damage and xanthophyll cycle-dependent energy dissipation. Photochem Photobiol 64:552–563

    CAS  Google Scholar 

  • Ho YN, Mathew DC, Hsiao SH, Shih CH, Chien MF, Chiang HM, Huang CC (2012) Selection and application of endophytic bacterium Achromobacter xylosoxidans strain F3B for improving phytoremediation of phenolic pollutants. J Hazard Mater 219–220:43–49

    Article  Google Scholar 

  • Iori V, Pietrini F, Zacchini M (2012) Assessment of ibuprofen tolerance and removal capability in Populus nigra L. by in vitro culture. J Hazard Mater 229–230:217–223

    Article  Google Scholar 

  • Lingua G, Franchin C, Todeschini V, Castiglione S, Biondi S, Burlando B, Parravicini V, Torrigiani P, Berta G (2008) Arbuscular mycorrhizal fungi differentially affect the response to high zinc concentrations of two registered poplar clones. Environ Pollut 153:137–147

    Article  CAS  Google Scholar 

  • Marmiroli M, Visioli G, Maestri E, Marmiroli N (2011) Correlating SNP genotype with the phenotypic response to exposure to cadmium in Populus spp. Environ Sci Technol 45:4497–4505

    Article  CAS  Google Scholar 

  • McGrath SP, Zhao F-J (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14:1–6

    Article  Google Scholar 

  • Memon AR, Schröder P (2009) Implications of metal accumulation mechanisms to phytoremediation. Environ Sci Pollut Res 16:162–175

    Article  CAS  Google Scholar 

  • Mench M, Schwitzguébel JP, Schroeder P, Bert V, Gawronski S, Gupta S (2009) Assessment of successful experiments and limitations of phytotechnologies: contaminant uptake, detoxification and sequestration, and consequences for food safety. Environ Sci Pollut Res 16:876–900

    Article  CAS  Google Scholar 

  • Moore FP, Barac T, Borremans B, Oeyen L, Vangronsveld J, van der Lelie D, Campbell CD, Moore ERB (2006) Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site: the characterisation of isolates with potential to enhance phytoremediation. Sys App Micro 29:539–556

    Article  CAS  Google Scholar 

  • Pietrini F, Zacchini M, Iori V, Pietrosanti L, Bianconi D, Massacci A (2010a) Screening of poplar clones for cadmium phytoremediation using photosynthesis, biomass and cadmium content analyses. Int J Phytoremediat 12:105–120

    Article  CAS  Google Scholar 

  • Pietrini F, Zacchini M, Iori V, Pietrosanti L, Ferretti M, Massacci A (2010b) Spatial distribution of cadmium in leaves and its impact on photosynthesis: examples of different strategies in willow and poplar clones. Plant Biol 12:355–363

    Article  CAS  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  Google Scholar 

  • Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees—a review. Environ Int 29:529–540

    Article  CAS  Google Scholar 

  • Regier N, Frey B, Converse B, Roden E, Grosse-Honebrink A, Bravo AG, Cosio C (2012) Effect of Elodea nuttallii roots on bacterial communities and MMHg proportion in a Hg polluted sediment. Plos One 7:e45565

    Article  CAS  Google Scholar 

  • Romano A, Vitullo D, Di Pietro A, Lima G, Lanzotti V (2011) Antifungal lipopeptides from Bacillus amyloliquefaciens strain BO7. J Nat Prod 74:145–151

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Sanità di Toppi L, Gabbrielli R (2009) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  • Sharkey TD, Bernacchi CJ, Farquhar GD, Singsaas EL (2008) Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell Environ 30:1035–1040

    Article  Google Scholar 

  • Stoláriková M, Vaculík M, Lux A, Di Baccio D, Minnocci A, Andreucci A, Sebastiani L (2012) Anatomical differences of poplar (Populus × euramericana clone I-214) roots exposed to zinc excess. Biologia 67:483–489

    Article  Google Scholar 

  • Todeschini V, Franchin C, Castiglione S, Burlando B, Biondi S, Torrigiani P, Berta G, Lingua G (2007) Responses to copper of two registered poplar clones inoculated or not with arbuscular mycorrhizal fungi. Caryologia 60:146–155

    Article  Google Scholar 

  • Tognetti R, Sebastiani L, Minnocci A (2004) Gas exchange and foliage characteristics of two poplar clones grown in soil amended with industrial waste. Tree Physiol 24:75–82

    Article  Google Scholar 

  • Uraguchi S, Mori S, Kuramata M, Kawasaki A, Arao T, Ishikawa S (2009) Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. J Exp Bot 60:2677–2688

    Article  CAS  Google Scholar 

  • Vitullo D, De Curtis F, Di Pietro A, Lima G (2008) Exploring the interaction between bacterial biocontrol agents and genetically characterized mutants of Fusarium oxysporum. J Plant Pathol 90:42–43

    Google Scholar 

  • Vitullo D, Romano A, Di Pietro A, Lanzotti V, Lima G (2012) Role of new bacterial surfactins in the antifungal interaction between Bacillus amyloliquefaciens and Fusarium oxysporum. Plant Pathol 61:689–699

    Article  CAS  Google Scholar 

  • Vollenweider P, Cosio C, Günthardt-Goerg MS, Keller C (2006) Localization and effects of cadmium in leaves of a tolerant Salix viminalis L. Part II. Microlocalization and cellular effect of cadmium. Environ Exp Bot 58:25–40

    Article  CAS  Google Scholar 

  • Wang X, Jia Y (2010) Study on adsorption and remediation of heavy metals by poplar and larch in contaminated soil. Environ Sci Pollut Res 17:1331–1338

    Article  CAS  Google Scholar 

  • Wu G, Kang H, Zhang X, Shao H, Chu L, Ruan C (2010) A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. J Hazard Mater 174:1–8

    Article  CAS  Google Scholar 

  • Zacchini M, Pietrini F, Scarascia Mugnozza G, Iori V, Pietrosanti L, Massacci A (2009) Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics. Water Air Soil Pollut 197:23–34

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge: the Project “Molecular, physiological, and agronomic analyzes for selecting and managing Salicacee in phytoremediation” (MIUR, PRIN 2008) for financial support; Prof. Arturo Alvino (University of Molise) for providing the photosynthesis system; Annachiara Di Niro and Carla Maglieri for help with measurements; Osservatorio regionale sulla qualità degli alimenti di origine vegetale of ARPA Molise (Environmental Protection Regional Agency) for Cd determination; CCS Aosta srl for supplying the Micosat F Fito®.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Cocozza.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cocozza, C., Vitullo, D., Lima, G. et al. Enhancing phytoextraction of Cd by combining poplar (clone “I-214”) with Pseudomonas fluorescens and microbial consortia. Environ Sci Pollut Res 21, 1796–1808 (2014). https://doi.org/10.1007/s11356-013-2073-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-2073-3

Keywords

Navigation