Skip to main content
Log in

Microbial biotransformation of aryl sulfanylpentafluorides

  • Short Research and Discussion Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

We report, for the first time, the biotransformation of potential pollutants bearing the pentafluorosulfanyl (SF5-) functional group in a fungus and bacteria. Cunninghamella elegans transformed p-methoxy phenyl SF5 via demethylation; Pseudomonas knackmussii and P. pseudoalcaligenes KF707 transformed amino-, hydroxyamino- and diamino- substituted phenyl SF5, forming the N-acetylated derivatives as the main product. Cell-free extract of Streptomyces griseus transformed 4-amino-3-hydroxy-phenyl SF5 to the N-acetylated derivative in the presence of acetyl CoA, confirming that an N-acetyltransferase is responsible for the bacterial biotransformations. Approximately 25 % of drugs and 30 % of agrochemicals contain fluorine, and the trifluoromethyl group is a prominent feature of many of these since it improves lipophilicity and stability. The pentafluorosulfanyl substituent is seen as an improvement on the trifluoromethyl group and research efforts are underway to develop synthetic methods to incorporate this moiety into biologically active compounds. It is important to determine the potential environmental impact of these compounds, including the potential biotransformation reactions that may occur when they are exposed to microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4

Similar content being viewed by others

References

  • Alotomonte S, Zanda M (2012) Synthetic chemistry and biological activity of pentafluorosulphanyl (SF5) organic molecules. J Fluorine Chem 143:57–93

    Article  Google Scholar 

  • Amadio J, Murphy CD (2010) Biotransformation of fluorobiphenyl by Cunninghamella elegans. Appl Microbiol Biotechnol 86:345–351

    Article  CAS  Google Scholar 

  • Beier P, Pastyrikova T, Vida N, Iakobson G (2011) SNAr reactions of nitro-(pentafluorosulfanyl)benzenes to generate SF5 aryl ethers and sulfides. Org Lett 13:1466–1469

    Article  CAS  Google Scholar 

  • Beier P, Pastyrikova T (2011) Hydroxylation of nitro-(pentafluorosulfanyl)benzenes via vicarious nucleophilic substitution of hydrogen. Tetrahedron Lett 52:4392–4394

    Article  CAS  Google Scholar 

  • Boersma FGH, McRoberts WC, Cobb SL, Murphy CD (2004) A F-19 NMR study of fluorobenzoate biodegradation by Sphingomonas sp. HB-1. FEMS Microbiol Lett 237:355–361

    Article  CAS  Google Scholar 

  • Bright TV, Dalton F, Elder VL, Murphy CD, O’Connor NK, Sandford G (2013) A convenient chemical-microbiological method for developing fluorinated pharmaceuticals. Org Biomol Chem 11:1135–1142

    Article  CAS  Google Scholar 

  • Cerniglia CE, Miller DW, Yang SK, Freeman JP (1984) Effects of a fluoro substituent on the fungal metabolism of 1-fluoronaphthalene. Appl Environ Microbiol 48:294–300

    CAS  Google Scholar 

  • Dolbier WR (2005) Fluorine chemistry at the millennium. J Fluorine Chem 126:157–163

    Article  CAS  Google Scholar 

  • Donnelly C, Murphy CD (2009) Purification and properties of fluoroacetate dehalogenase from Pseudomonas fluorescens DSM 8341. Biotechnol Lett 31:245–250

    Article  CAS  Google Scholar 

  • Engesser KH, Cain RB, Knackmuss HJ (1988a) Bacterial metabolism of side-chain fluorinated aromatics—co-metabolism of 3-trifluoromethyl(tfm)-benzoate by Pseudomonas putida (arvilla) mt-2 and Rhodococcus rubropertinctus N657. Arch Microbiol 149:188–197

    Article  CAS  Google Scholar 

  • Engesser KH, Rubio MA, Knackmuss HJ (1990) Bacterial metabolism of side-chain-fluorinated aromatics—unproductive meta-cleavage of 3-trifluoromethylcatechol. Appl Microbiol Biotechnol 32:600–608

    CAS  Google Scholar 

  • Engesser KH, Rubio MA, Ribbons DW (1988b) Bacterial metabolism of side-chain fluorinated aromatics—co-metabolism of 4-trifluoromethyl(tfm)-benzoate by 4-isopropylbenzoate grown Pseudomonas putida Jt strains. Arch Microbiol 149:198–206

    Article  CAS  Google Scholar 

  • Ferreira MIM, Marchesi JR, Janssen DB (2008) Degradation of 4-fluorophenol by Arthrobacter sp. strain IF1. Appl Microbiol Biotechnol 78:709–717

    Article  CAS  Google Scholar 

  • Harper DB, O’Hagan D (1994) The fluorinated natural products. Nat Prod Rep 11:123–133

    Article  CAS  Google Scholar 

  • Hughes D, Clark BR, Murphy CD (2011) Biodegradation of polyfluorinated biphenyl in bacteria. Biodegradation 22:741–749

    Article  CAS  Google Scholar 

  • Jackson DA, Mabury SA (2009) Environmental properties of pentafluorosulfanyl compounds: physical properties and photodegradation. Environ Toxicol Chem 28:1866–1873

    Article  CAS  Google Scholar 

  • Key BD, Howell RD, Criddle CS (1997) Fluorinated organics in the biosphere. Environ Sci Technol 31:2445–2454

    Article  CAS  Google Scholar 

  • Kubiak X, Dervins-Ravault D, Pluvinage B, Chaffotte AF, Gomez-Valero L, Dairou J, Busi F, Dupret JM, Buchrieser C, Rodrigues-Lima F (2012) Characterization of an acetyltransferase that detoxifies aromatic chemicals in Legionella pneumophila. Biochem J 445:219–228

    CAS  Google Scholar 

  • Lim DS, Choi JS, Pak CS, Welch JT (2007) Synthesis and herbicidal activity of a pentafluorosulfanyl analog of trifluralin. J Pestic Sci 32:255–259

    Article  CAS  Google Scholar 

  • Misiak K, Casey E, Murphy CD (2011) Factors influencing 4-fluorobenzoate degradation in biofilm cultures of Pseudomonas knackmussii B13. Water Res 45:3512–3520

    Article  CAS  Google Scholar 

  • Murphy CD (2010) Biodegradation and biotransformation of organofluorine compounds. Biotechnol Lett 32:351–359

    Article  CAS  Google Scholar 

  • Murphy CD, Quirke S, Balogun O (2008) Degradation of fluorobiphenyl by Pseudomonas pseudoalcaligenes KF707. FEMS Microbiol Lett 286:45–49

    Article  CAS  Google Scholar 

  • Pastyrikova T, Iakobson G, Vida N, Pohl R, Beier P (2012) Direct amination of nitro(pentafluorosulfanyl)benzenes through vicarious nucleophilic substitution of hydrogen. Eur J Org Chem 2012(11):2123–2126

    Article  CAS  Google Scholar 

  • Stolz A, Busse HJ, Kampfer P (2007) Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 57:572–576

    Article  CAS  Google Scholar 

  • Suzuki H, Ohnishi Y, Horinouchi S (2007) Arylamine N-acetyltransferase responsible for acetylation of 2-aminophenols in Streptomyces griseus. J Bacteriol 189:2155–2159

    Article  CAS  Google Scholar 

  • Takenaka S, Cheng MY, Mulyono Koshiya A, Murakami S, Aoki K (2009) Gene cloning and characterization of arylamine N-acetyltransferase from Bacillus cereus strain 10-L-2. J Biosci Bioeng 107:27–32

    Article  CAS  Google Scholar 

  • Tweedy BG, Loeppky C, Ross JA (1970) Metobromuron—acetylation of aniline moiety as a detoxification mechanism. Science 168:482

    Article  CAS  Google Scholar 

  • Welch JT, Lim DS (2007) The synthesis and biological activity of pentafluorosulfanyl analogs of fluoxetine, fenfluramine, and norfenfluramine. Bioorg Med Chem 15:6659–6666

    Article  CAS  Google Scholar 

  • Wipf P, Mo TT, Geib SJ, Caridha D, Dow GS, Gerena L, Roncal N, Milner EE (2009) Synthesis and biological evaluation of the first pentafluorosulfanyl analogs of mefloquine. Org Biomol Chem 7:4163–4165

    Article  CAS  Google Scholar 

  • Wright GD (1999) Aminoglycoside-modifying enzymes. Curr Opin Microbiol 2:499–503

    Article  CAS  Google Scholar 

  • Zhang DL, Yang YF, Leakey JEA, Cerniglia CE (1996) Phase I and phase II enzymes produced by Cunninghamella elegans for the metabolism of xenobiotics. FEMS Microbiol Lett 138:221–226

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was conducted with financial assistance from the Society for General Microbiology (UK), Science Foundation Ireland, Irish Research Council, Grant Agency of the Czech Republic (P207/12/0072) and the Academy of Sciences of the Czech Republic (RVO: 61388963).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cormac D. Murphy.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 458 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kavanagh, E., Winn, M., Gabhann, C.N. et al. Microbial biotransformation of aryl sulfanylpentafluorides. Environ Sci Pollut Res 21, 753–758 (2014). https://doi.org/10.1007/s11356-013-1985-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-1985-2

Keywords

Navigation