Skip to main content

Advertisement

Log in

Dissipation of available benzo[a]pyrene in aging soil co-contaminated with cadmium and pyrene

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A microcosm experiment was conducted to investigate the dissipation of available benzo[a]pyrene (BaP) in soils co-contaminated with cadmium (Cd) and pyrene (PYR) during aging process. The available residue of BaP in soil was separated into desorbing and non-desorbing fractions. The desorbing fraction contributed more to the dissipation of available BaP than the non-desorbing fraction did. The concentration of bound-residue fraction of BaP was quite low across all treatments. Within the duration of this study (250 days), transformation of BaP from available fractions to bound-residue fraction was not observed. Microbial degradation was the dominant mechanism of the dissipation of available BaP in the soil. The dissipation of available BaP was significantly inhibited with the increment in Cd level in the soil. The addition of PYR (250 mg kg−1) remarkably promoted the dissipation of available BaP without reducing Cd availability in the soil. The calculated half-life of available BaP in the soil prolonged with the increment in Cd level; however, the addition of PYR shortened the half-life of available BaP by 13.1, 12.7, and 32.8 % in 0.44, 2.56, and 22 mg Cd kg−1 soils, respectively. These results demonstrated that the inhibiting effect of Cd and the promoting effect of PYR on the dissipation of available BaP were competitive. Therefore, this study shows that the bioremediation process of BaP can be more complicated in co-contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Reference

  • Alexander M (1995) How toxic are toxic-chemicals in soil. Environ Sci Technol 29(11):2713–2717

    Article  CAS  Google Scholar 

  • Allan IJ, Booij K, Paschke A, Vrana B, Mills GA, Greenwood R (2009) Field performance of seven passive sampling devices for monitoring of hydrophobic substances. Environ Sci Technol 43(14):5383–5390

    Article  CAS  Google Scholar 

  • Baath E (1989) Effects of heavy-metals in soil on microbial processes and populations (a review). Water Air Soil Pollut 47(3–4):335–379

    Article  CAS  Google Scholar 

  • Cai QY, Mo CH, Wu QT, Katsoyiannis A, Zeng QY (2008) The status of soil contamination by semivolatile organic chemicals (SVOCs) in China: a review. Sci Total Environ 389(2–3):209–224

    Article  CAS  Google Scholar 

  • Chen SH, Aitken MD (1999) Salicylate stimulates the degradation of high molecular weight polycyclic aromatic hydrocarbons by Pseudomonas saccharophila P15. Environ Sci Technol 33(3):435–439

    Article  CAS  Google Scholar 

  • Cornelissen G, Rigterink H, Ferdinandy MMA, Van Noort PCM (1998) Rapidly desorbing fractions of PAHs in contaminated sediments as a predictor of the extent of bioremediation. Environ Sci Technol 32(7):966–970

    Article  CAS  Google Scholar 

  • Cuypers C, Pancras T, Grotenhuis T, Rulkens W (2002) The estimation of PAH bioavailability in contaminated sediments using hydroxypropyl-beta-cyclodextrin and Triton X-100 extraction techniques. Chemosphere 46(8):1235–1245

    Article  CAS  Google Scholar 

  • Doick KJ, Clasper PJ, Urmann K, Semple KT (2006) Further validation of the HPCD-technique for the evaluation of PAH microbial availability in soil. Environ Pollut 144(1):345–354

    Article  CAS  Google Scholar 

  • Gao YZ, Zeng YC, Shen Q, Ling WT, Han J (2009) Fractionation of polycyclic aromatic hydrocarbon residues in soils. J Hazard Mater 172(2–3):897–903

    Google Scholar 

  • Hickman ZA, Reid BJ (2005) Towards a more appropriate water based extraction for the assessment of organic contaminant availability. Environ Pollut 138(2):299–306

    Article  CAS  Google Scholar 

  • Hickman ZA, Swindell AL, Allan IJ, Rhodes AH, Hare R, Semple KT, Reid BJ (2008) Assessing biodegradation potential of PAHs in complex multi-contaminant matrices. Environ Pollut 156(3):1041–1045

    Article  CAS  Google Scholar 

  • Hynes RK, Farrell RE, Germida JJ (2004) Plant-assisted degradation of phenanthrene as assessed by solid-phase microextraction (SPME). Int J Phytorem 6(3):253–268

    Article  CAS  Google Scholar 

  • Juhasz AL (1998) Microbial degradation of high molecular weight polycyclic aromatic hydrocarbons. Ph.D. Thesis, Victoria University of Technology, Melbourne, Australia

  • Juhasz AL, Naidu R (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. Int Biodeter Biodegr 45(1–2):57–88

    Article  CAS  Google Scholar 

  • Juhasz AL, Smith E, Waller N, Stewart R, Weber J (2010) Bioavailability of residual polycyclic aromatic hydrocarbons following enhanced natural attenuation of creosote-contaminated soil. Environ Pollut 158(2):585–591

    Article  CAS  Google Scholar 

  • Kastner M, Mahro B (1996) Microbial degradation of polycyclic aromatic hydrocarbons in soils affected by the organic matrix of compost. Appl Microbiol Biotechnol 44(5):668–675

    Article  CAS  Google Scholar 

  • Kelsey JW, Kottler BD, Alexander M (1997) Selective chemical extractants to predict bioavailability of soil-aged organic chemicals. Environ Sci Technol 31(1):214–217

    Article  CAS  Google Scholar 

  • Li PJ, Wang X, Allinson G, Li XJ, Xiong XZ (2009) Risk assessment of heavy metals in soil previously irrigated with industrial wastewater in Shenyang, China. J Hazard Mater 161(1):516–521

    Article  CAS  Google Scholar 

  • Li CH, Wong YS, Tam NFY (2010) Anaerobic biodegradation of polycyclic aromatic hydrocarbons with amendment of iron(III) in mangrove sediment slurry. Bioresour Technol 101(21):8083–8092

    Article  CAS  Google Scholar 

  • Lin DH, Zhu LZ, Wang J (2005) Assessment on the contamination and risk of PAHs in a metal smelting area. Acta Ecol Sin 25(2):261–267 (in Chinese)

    CAS  Google Scholar 

  • Ling WT, Zeng YC, Gao YZ, Dang HJ, Zhu XZ (2010) Availability of polycyclic aromatic hydrocarbons in aging soils. J Soils Sediments 10(5):799–807

    Article  CAS  Google Scholar 

  • Lors C, Damidot D, Ponge JF, Périé F (2012) Comparison of a bioremediation process of PAHs in a PAH-contaminated soil at field and laboratory scales. Environ Pollut 165:11–17

    Article  CAS  Google Scholar 

  • Ma B, Chen HH, He Y, Wang HZ, Xu JM (2010) Evaluation of toxicity risk of polycyclic aromatic hydrocarbons (PAHs) in crops rhizosphere of contaminated field with sequential extraction. J Soils Sediments 10(5):955–963

    Article  CAS  Google Scholar 

  • Nisbet ICT, LaGoy PK (1992) Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul Toxicol Pharmacol 16:290–300

    Article  CAS  Google Scholar 

  • Northcott GL, Jones KC (2001) Partitioning, extractability, and formation of nonextractable PAH residues in soil. 1. Compound differences in aging and sequestration. Environ Sci Technol 35(6):1103–1110

    Article  CAS  Google Scholar 

  • Parrish ZD, Banks MK, Schwab AP (2005) Assessment of contaminant lability during phytoremediation of polycyclic aromatic hydrocarbon impacted soil. Environ Pollut 137(2):187–197

    Article  CAS  Google Scholar 

  • Ratuzny T, Gong Z, Wilke BM (2009) Total concentrations and speciation of heavy metals in soils of the Shenyang Zhangshi Irrigation Area, China. Environ Monit Assess 156(1–4):171–180

    Article  CAS  Google Scholar 

  • Reid BJ, Stokes JD, Jones KC, Semple KT (2000) Nonexhaustive cyclodextrin-based extraction technique for the evaluation of PAH bioavailability. Environ Sci Technol 34(15):3174–3179

    Article  CAS  Google Scholar 

  • Rentz JA, Alvarez PJ, Schnoor JL (2005) Benzo[a]pyrene co-metabolism in the presence of plant root extracts and exudates: implications for phytoremediation. Environ Pollut 136(3):477–484

    Article  CAS  Google Scholar 

  • Richnow HH, Annweiler E, Koning M, Luth JC, Stegmann R, Garms C, Francke W, Michaelis W (2000) Tracing the transformation of labelled [1-13C]phenanthrene in a soil bioreactor. Environ Pollut 108(1):91–101

    Article  CAS  Google Scholar 

  • Sabaté J, Viñas M, Solanas AM (2006) Bioavailability assessment and environmental fate of polycyclic aromatic hydrocarbons in biostimulated creosote-contaminated soil. Chemosphere 63(10):1648–1659

    Article  Google Scholar 

  • Sandrin TR, Maier RM (2002) Effect of pH on cadmium toxicity, speciation, and accumulation during naphthalene biodegradation. Environ Toxicol Chem 21(10):2075–2079

    Article  CAS  Google Scholar 

  • Sandrin TR, Maier RM (2003) Impact of metals on the biodegradation of organic pollutants. Environ Health Persp 111(8):1093–1101

    Article  CAS  Google Scholar 

  • Smith MJ, Flowers TH, Duncan HJ, Alder J (2006) Effects of polycyclic aromatic hydrocarbons on germination and subsequent growth of grasses and legumes in freshly contaminated soil and soil with aged PAHs residues. Environ Pollut 141(3):519–525

    Article  CAS  Google Scholar 

  • Staniszewska M, Graca B, Bełdowska M, Saniewska D (2013) Factors controlling benzo(a)pyrene concentration in aerosols in the urbanized coastal zone. A case study: Gdynia, Poland (Southern Baltic Sea). Environ Sci Pollut Res 20(6):4154–4163

    Article  CAS  Google Scholar 

  • Stroud JL, Paton GI, Semple KT (2009) Predicting the biodegradation of target hydrocarbons in the presence of mixed contaminants in soil. Chemosphere 74(4):563–567

    Article  CAS  Google Scholar 

  • Sun YB, Zhou QX, Xu YM, Wang L, Liang XF (2011) Phytoremediation for co-contaminated soils of benzo[a]pyrene (B[a]P) and heavy metals using ornamental plant Tagetes patula. J Hazard Mater 186(2–3):2075–2082

    Article  CAS  Google Scholar 

  • Swindell AL, Reid BJ (2006) Influence of diesel concentration on the fate of phenanthrene in soil. Environ Pollut 140(1):79–86

    Article  CAS  Google Scholar 

  • Van Ranst E, Verloo M, Demeyer A, Pauwels JM (1999) Manual for the soil chemistry and fertility laboratory: analytical methods for soils and plants equipment, and management of consumables. Ghent University, Ghent, 243 p

  • Wang K, Zhang J, Zhu ZQ, Huang HG, Li TQ, He ZL, Yang XE, Alva A (2012) Pig manure vermicompost (PMVC) can improve phytoremediation of Cd and PAHs co-contaminated soil by Sedum alfredii. J Soils Sediments 12(7):1089–1099

    Article  CAS  Google Scholar 

  • Wu CF, Wu JP, Luo YM, Zhang HB, Teng Y (2008) Statistical and geoestatistical characterization of heavy metal concentrations in a contaminated area taking into account soil map units. Geoderma 144(1):171–179

    Article  CAS  Google Scholar 

  • Yang CJ, Zhou QX, Wei SH, Hu YH, Bao YY (2011) Chemical-assisted phytoremediation of Cd-PAHs contaminated soils using Solanum nigrum L. Int J Phytorem 13(8):818–833

    Article  CAS  Google Scholar 

  • Yaws CL (1999) Chemical properties handbook. McGraw-Hill, New York, pp 340–389

    Google Scholar 

  • Yi H, Crowley DE (2007) Biostimulation of PAH degradation with plants containing high concentrations of linoleic acid. Environ Sci Technol 41(12):4382–4388

    Article  CAS  Google Scholar 

  • Yu XZ, Wu SC, Wu FY, Wong MH (2011) Enhanced dissipation of PAHs from soil using mycorrhizal ryegrass and PAH-degrading bacteria. J Hazard Mater 186(2–3):1206–1217

    Article  CAS  Google Scholar 

  • Zhang H, Dang Z, Zheng LC, Yi XY (2009a) Remediation of soil co-contaminated with pyrene and cadmium by growing maize (Zea mays L.). Int J Environ Sci Technol 6(2):249–258

    Article  Google Scholar 

  • Zhang XY, Lin FF, Wong MTF, Feng XL, Wang K (2009b) Identification of soil heavy metal sources from anthropogenic activities and pollution assessment of Fuyang County, China. Environ Monit Assess 154(1–4):439–449

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We appreciate Dr. A Alva, USDA-ARS, Prosser, WA, for technical and language review that helped improve the quality of this paper. This study was financially supported by “863” Target Goal Projects from Ministry of Science of China (#2012AA101405-1), a key project from Ministry of Education of China (#310003), and a project from Ministry of Environmental Protection of China (#2011467057).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ting-qiang Li or Xiao-e Yang.

Additional information

Responsible editor: Zhihong Xu

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, K., Chen, Xx., Zhu, Zq. et al. Dissipation of available benzo[a]pyrene in aging soil co-contaminated with cadmium and pyrene. Environ Sci Pollut Res 21, 962–971 (2014). https://doi.org/10.1007/s11356-013-1960-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-1960-y

Keywords

Navigation