Skip to main content

Advertisement

Log in

Comparison of photocatalytic degradation of dyes in relation to their structure

  • Wastewater Reuse Applications and Contaminants of Emerging Concern (WRA & CEC 2012)
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The photocatalytic degradation of a series of six acid dyes (Direct Red 80, Direct Red 81, Direct Red 23, Direct Violet 51, Direct Yellow 27, and Direct Yellow 50) has been tested compared in terms of color removal, mineralization, and toxicity (Lactuca sativa L. test) after photocatalysis on immobilized titanium dioxide. The dyes were examined at their natural pH and after hydrolysis at pH 12. Results show that hydrolysis decreases strongly the efficiency of color removal, that full mineralization takes much longer reaction time than color removal, and that toxicity is only very partially reduced. Some structural parameters, related to the structure and the topology of the dye molecules, could be correlated with the apparent color removal rates at natural pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abd El-Rahim WM, Wagdy KB, Khalil WKB, Eshak MG (2008) Genotoxicity studies on the removal of a direct textile dye by a fungal strain, in vivo, using micronucleus and RAPD-PCR techniques on male rats. J Appl Toxicol 28:484–490

    Article  CAS  Google Scholar 

  • Alinsafi A, Evenou F, Abdulkarim EM, Pons MN, Zahraa O, Benhammou A, Yaacoubi A, Nejmeddine A (2007) Treatment of textile industry wastewater by supported photocatalysis. Dyes Pigments 74:439–445

    Article  CAS  Google Scholar 

  • Alves de Lima RO, Bazo AP, Salvadori DMF, Rech CM, Oliveira DD, Umbuzeiro GD (2007) Mutagenic and carcinogenic potential of a textile azo dye processing plant effluent that impacts a drinking water source. Mutat Res-Gen Tox En 626:53–60

    Article  CAS  Google Scholar 

  • De Andrade FV, de Lima GM, Augusti R, Coelho MG, Ardisson JD, Romero OB (2012) A versatile approach to treat aqueous residues of textile industry: the photocatalytic degradation of Indigo Carmine dye employing the autoclaved cellular concrete/Fe2O3 system. Chem Eng J 180:25–31

    Article  Google Scholar 

  • Anjaneyulu Y, Sreedhara Chary N, Samuel Suman Raj D (2005) Decolourization of industrial effluents—available methods and emerging technologies—a review. Rev Env Sci Bio/Technol 4(4):245–273

    Article  CAS  Google Scholar 

  • Ansari R, Tehrani MS, Mohammad-Khah A (2012) Highly efficient dye removal from aqueous solutions using simple chemical modification of wood sawdust. J Wood Chem Technol 32(3):198–209

    Article  CAS  Google Scholar 

  • Bae JS, Freeman HS (2007) Aquatic toxicity evaluation of copper-complexed direct dyes to the Daphnia magna. Dyes Pigments 73:126–132

    Article  CAS  Google Scholar 

  • Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, Cogliano V (2008) Carcinogenicity of some aromatic amines, organic dyes, and related exposures. Lancet Oncol 9:322–323

    Article  Google Scholar 

  • Bafana A, Devi SS, Chakrabarti T (2011) Azo dyes: past, present and the future. Environ Rev 19:350–370

    Article  CAS  Google Scholar 

  • Banks MK, Schultz KE (2005) Comparison of plants for germination toxicity tests in petroleum-contaminated soils. Water Air Soil Poll 167:211–219

    Article  CAS  Google Scholar 

  • Bazin I, Hassine AIH, Hamouda YH, Mnif W, Bartegi A, Lopez-Ferber M, De Waard M, Gonzalez C (2012) Estrogenic and anti-estrogenic activity of 23 commercial dyes. Ecotoxicol Environ Saf 85:131–136

    Article  CAS  Google Scholar 

  • Benigni R, Bossa C (2012) Flexible use of QSAR models in predictive toxicology: a case study on aromatic amines. Environ Mol Mutagen 53:62–69

    Article  CAS  Google Scholar 

  • Carneiro PA, Umbuzeiro GA, Oliveira DP, Zanoni MVB (2010) Assessment of water contamination caused by a mutagenic textile effluent/dyehouse effluent bearing disperse dyes. J Hazard Mat 174:694–699

    Article  CAS  Google Scholar 

  • Chequer FMD, Angeli JPF, Ferras ERA, Tsuboy MS, Marcarini JC, Mantovani MS (2009) The azo dyes Disperse Red 1 and Disperse Orange 1 increase the micronuclei frequencies in human lymphocytes and in HepG2 cells. Mutat Res 676:83–86

    Article  CAS  Google Scholar 

  • Chequer FMD, Lizier TM, Felicio R, Zanoni MVB, Debonsi HM, Lopes NP, Marcos R, Oliveira DP (2011) Analyses of the genotoxic and mutagenic potential of the products formed after the biotransformation of the azo dye Disperse Red 1. Toxicol Vitro 25:2054–2063

    Article  CAS  Google Scholar 

  • Corso CR, Almeida EJR, Santos GC, Morão G, Fabris GSL, Mitter EK (2012) Bioremediation of direct dyes in simulated textile effluents by a paramorphogenic form of Aspergillus oryzae. Wat Sci Technol 65(8):1490–1495

    Article  CAS  Google Scholar 

  • Daneshwar E, Kousha M, Jokar M, Koutahzadeh N, Guibal E (2012) Acidic dye biosorption onto marine brown macroalgae: isotherms, kinetic and thermodynamic studies. Chem Eng Sci 204:225–234

    Article  Google Scholar 

  • Doulati Ardejani F, Badii KH, Limaee NY, Shafaei SZ, Mirhabibi AR (2008) Adsorption of Direct red 80 dye from aqueous solution onto almond shells: effect of pH, initial concentration and shell type. J Hazard Mater 151(2–3):730–737

    Article  CAS  Google Scholar 

  • Environment Canada (2012) Aromatic Azo- and Benzidine-Based Substances. http://www.ec.gc.ca/ese-ees

  • Fatta-Kassinos D, Vasquez I, Kümmerer K (2011) Transformation products of pharmaceuticals in surface waters and wastewater formed during photolysis and advanced oxidation processes—degradation, elucidation of byproducts and assessment of their biological potency. Chemosphere 85:693–709

    Article  CAS  Google Scholar 

  • Ferraz ERA, Daruge Grando M, Oliveira DP (2011) The azo dye Disperse Orange 1 induces DNA damage and cytotoxic effects but does not cause ecotoxic effects in Daphnia similis and Vibrio fischeri. J Hazard Mat 192:628–633

    Article  CAS  Google Scholar 

  • Forgacs E, Cserhàti T, Oros G (2004) Removal of synthetic dyes from wastewaters: a review. Environ Int 30:953–971

    Article  CAS  Google Scholar 

  • Golka K, Kopps S, Prager HM, Mende S, Thiel R, Jungmann O, Zumbe J, Bolt HM, Blaszkewicz M, Hengstler JG, Selinski S (2012) Bladder cancer in crack testers applying azo dye-based sprays to metal bodies. J Toxicol Env Heal A 75(8-1):566–571

    Article  CAS  Google Scholar 

  • Greene N, Judson PN, Langowski JJ, Marchant CA (1999) Knowledge-based expert systems for toxicity and metabolism prediction: DEREK, StAR and METEOR. SAR QSAR Environ Res 10(2–3):299–314

    Article  CAS  Google Scholar 

  • Guillard C, Lachheb H, Houas A, Ksibi M, Elaloui E, Herrmann JM (2003) Influence of chemical structure of dyes, of pH and of inorganic salts on their photocatalytic degradation by TiO2 comparison of the efficiency of powder and supported TiO2. J Photoch Photobio A 158:27–36

    Article  CAS  Google Scholar 

  • Gupta VK, Mittal A, Gajbe V, Mittal J (2006) Removal and recovery of the hazardous dye Acid Orange 7 through adsorption over waste materials: bottom ash and de-oiled soya. Ind Eng Chem Res 45:1446–1453

    Article  CAS  Google Scholar 

  • Gupta VK, Ali I, Saini VK (2007) Adsorption studies on the removal of Vertigo Blue 49 and Orange DNA13 from aqueous solutions using carbon slurry developed from a waste material. J Colloid Interf Sci 315:87–93

    Article  CAS  Google Scholar 

  • Gupta VK, Gupta B, Rastogi A, Agarwal S, Nayak A (2011) A comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo-dye–Acid Blue 113. J Hazard Mat 186:891–901

    Article  CAS  Google Scholar 

  • Hachem C, Bocquillon F, Zahraa O, Bouchy M (2001) Decolourization of textile industry wastewater by the photocatalytic degradation process. Dyes Pigments 49:117–125

    Article  CAS  Google Scholar 

  • Hashimoto K, Hirie I, Fujishima A (2005) TiO2 photocatalysis: a historical overview and future prospects. Jpn J Appl Phys 44(12):8269–8285

    Article  CAS  Google Scholar 

  • Hossein MA, Behzad H, Reza YA, Najmeh V (2012) Efficiency of Reactive Black 5 dye removals and determination of isotherm models in aqueous solution by use of activated carbon made of walnut wood. Res J Chem Environ 16(3):26–30

    CAS  Google Scholar 

  • Huang YH, Wei HC, Chen HT (2012) Heterogeneous photo-catalysis system for the degradation of azo dye Reactive Black 5 (RB5). Wat Sci Technol 65(2):221–226

    Article  CAS  Google Scholar 

  • Ignat ME, Dulman V, Onofrei T (2012) Reactive Red 3 and Direct Brown 95 dyes adsorption onto chitosan. Cell Chem Technol 46(5–6):357–367

    CAS  Google Scholar 

  • Işik M, Sponza DT (2004) Monitoring of toxicity and intermediates of C.I. Direct Black 38 azo dye through decolorization in an anaerobic/aerobic sequential reactor system. J Hazard Mat 114(1–3):29–39

    Google Scholar 

  • Jain HK, Agrawal RK (2007) Topological descriptors in modeling tumor necrosis factor alpha inhibitory activity of xanthines, pteridinediones and related compounds. Internet Electron J Mol Des 6:218–228

    CAS  Google Scholar 

  • Jensen GE, Niemelä JR, Wedebye EB, Nikolov NG (2008) QSAR models for reproductive toxicity and endocrine disruption in regulatory use—a preliminary investigation. SAR QSAR Environ Res 19(7–8):631–641

    Article  CAS  Google Scholar 

  • Kahraman S, Yalcin P, Kahraman H (2012) The evaluation of low-cost biosorbents for removal of an azo dye from aqueous solution. Water Environ J 26(3):399–404

    Article  CAS  Google Scholar 

  • Kawakami T, Isama K, Nakashima H, Tsuchiya T, Matsuaoka A (2010) Analysis of primary aromatic amines originated from azo dyes in commercial textile products in Japan. J Toxicol Env Heal A 45:1281–1295

    CAS  Google Scholar 

  • Khadikar PV, Mather KC, Singh S, Phadnis A, Shrivastava A, Mandaloid M (2002) Study on quantitative structure–toxicity relationships of benzene derivatives acting by narcosis. Bioorgan Med Chem 10:1761–1766

    Article  CAS  Google Scholar 

  • Khataee AR, Pons MN, Zahraa O (2010) Photocatalytic decolorisation and mineralization of orange dyes on immobilised titanium dioxide nanoparticles. Water Sci Technol 62(5):1112–1120

    Article  CAS  Google Scholar 

  • Khataee AR, Kasiri MB (2010) Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: influence of the chemical structure of dyes. J Mol Catal A-Chem 328:8–26

    Article  CAS  Google Scholar 

  • Khouni I, Marrot B, Moulin P, Ben Amara R (2011) Decolourization of the reconstituted textile effluent by different process treatments: enzymatic catalysis, coagulation/flocculation and nanofiltration processes. Desalination 268:27–37

    Article  CAS  Google Scholar 

  • Kumar K, Devi SS, Krishnamurthi K, Dutta D, Chakrabarti T (2007) Decolorisation and detoxification of Direct Blue 15 by a bacterial consortium. Bioresour Technol 98:3168–3171

    Article  CAS  Google Scholar 

  • Kousha M, Daneshvar E, Sohrabi MS, Jokar M, Bhatnagar A (2012) Adsorption of acid orange II dye by raw and chemically modified brown macroalga Stoechospermum marginatum. Chem Eng J 192:67–76

    Article  CAS  Google Scholar 

  • Lachheb H, Puzenat E, Houas A, Ksibi M, Elaloui E, Guillard C, Herrmann JM (2002) Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Appl Catal B-Environ 39:75–90

    Article  CAS  Google Scholar 

  • Laing IG (1991) The impact of effluent regulations on the dyeing industry. Rev Prog Color 21:56–71

    Article  CAS  Google Scholar 

  • Le C, Wu JH, Li P, Wang X, Zhu NW, Wu PX, Yang B (2011) Decolorization of anthraquinone dye Reactive Blue 19 by the combination of persulfate and zero-valent iron. Wat Sci Technol 64(3):754–759

    Article  CAS  Google Scholar 

  • Lizier TM, Zanoni TB, Oliveira DP, Zanoni MVB (2012) Electrochemical reduction as a powerful tool to highlight the possible formation of by-products more toxic than Sudan III dye. Int J Electrochem Sci 7:7784–7796

    CAS  Google Scholar 

  • Manzetti S (2012) Ecotoxicity of polycyclic aromatic hydrocarbons, aromatic amines, and nitroarenes through molecular properties. Environ Chem Lett 10:349–361

    Article  CAS  Google Scholar 

  • Michael I, Hapeshi E, Michael C, Varela AR, Kyriakou S, Manaia CM, Fatta-Kassinos D (2012) Solar photo-Fenton process on the abatement of antibiotics at a pilot scale: degradation kinetics, ecotoxicity and phytotoxicity assessment and removal of antibiotic resistant enterococci. Water Res 46:5621–5634

    Article  CAS  Google Scholar 

  • Mittal A, Kaur D, Malviya A, Mittal J, Gupta VK (2009) Adsorption studies on the removal of coloring agent phenol red from wastewater using waste materials as adsorbents. J Colloid Interf Sci 337:345–354

    Article  CAS  Google Scholar 

  • Mittal A, Thakur V, Gajhe V (2012) Evaluation of adsorption characteristics of an anionic azo dye Brillant Yellow onto hen feathers in aqueous solutions. Environ Sci Pollut Res 19:2438–2447

    Article  CAS  Google Scholar 

  • Moghaddam SS, Moghaddam RA, Arami M (2010) A comparison study on Acid Red 119 dye removal using two different types of waterworks sludge. Wat Sci Technol 61(7):1673–1681

    Article  CAS  Google Scholar 

  • Møller P, Wallin H (2000) Genotoxic hazards of azo pigments and other colorants related to 1-phenylazo-2-hydroxynaphthalene. Mutat Res 462:13–30

    Article  Google Scholar 

  • Muthukumar M, Sargunamani D, Selvakumar N (2005) Statistical analysis of the effect of aromatic, azo and sulphonic acid groups on decolouration of acid dye effluents using advanced oxidation processes. Dyes Pigments 65:151–158

    Article  CAS  Google Scholar 

  • Natarajan R (2011) New topological indices with very high discriminatory power. SAR QSAR Environ Res 22(1–2):1–20

    Article  CAS  Google Scholar 

  • Oliveira DP, Carneiro PA, Sakagami MK, Zanoni MVB, Umbuzeiro GA (2007) Chemical characterization of a dye processing plant effluent—identification of the mutagenic components. Mut Res 626:135–142

    Article  CAS  Google Scholar 

  • Oliveira GAR, Ferraz ERA, Chequer FMD, Grando MD, Angeli JPF, Tsuboy MS, Marcarini JC, Mantovani MS, Osugi ME, Lizier TM, Zanoni MVB, Oliveira DP (2010) Chlorination treatment of aqueous samples reduces, but does not eliminate the mutagenic effect of the azo dyes Disperse Red 1, Disperse Red 13 and Disperse Orange 1. Mut Res 703:200–208

    Article  CAS  Google Scholar 

  • Osugi ME, Rajeshwar K, Ferraz ERA, Oliveira DP, Araújo ÂR, Zanoni MVB (2009) Comparison of oxidation efficiency of disperse dyes by chemical and photoelectrocatalytic chlorination and removal of mutagenic activity. Electrochim Acta 54:2086–2093

    Article  CAS  Google Scholar 

  • Palácio SM, Espinoza-Quiñones FR, Módenes AN, Oliveira CC, Borba FH, Silva FG Jr (2009) Toxicity assessment from electro-coagulation treated-textile dye wastewaters by bioassays. J Hazard Mater 172:330–337

    Article  Google Scholar 

  • Petrucci E, Montanaro D (2011) Anodic oxidation of a simulated effluent containing Reactive Blue 19 on a boron-doped diamond electrode. Chem Eng J 174:612–618

    Article  CAS  Google Scholar 

  • Samarghandi MR, Zarrabi M, Sepehr MN, Panahi R, Foroghi M (2012) Removal of Acid Red 14 by pumice stone as a low cost adsorbent: kinetic and equilibrium study. Iran J Chem Chem Eng 31(3):19–27

    CAS  Google Scholar 

  • Sánchez-Duarte RG, Sánchez-Machado DI, López-Cervantes J, Correa-Murrieta MA (2012) Adsorption of allura red dye by cross-linked chitosan from shrimp waste. Wat Sci Technol 65(4):618–623

    Article  Google Scholar 

  • Saratale RG, Saratale GD, Chang JS, Govindwar SP (2011) Bacterial decolorization and degradation of azo dyes: a review. J Taiwan Inst Chem E 42:138–157

    Article  CAS  Google Scholar 

  • Sweeney EA, Chipman JK, Forsythe SJ (1994) Evidence for direct-acting oxidative genotoxicity by reduction products of azo dyes. Environ Health Perspect 102(Suppl 6):119–122

    Article  CAS  Google Scholar 

  • Talaska G, Gaultney B, Peters S, Succop P, Vermeulen R (2012) 2-Naphthol levels and genotoxicity in rubber workers. Toxicol Lett 213:45–48

    Article  CAS  Google Scholar 

  • Tan L, Ning S, Wang Y, Cao X (2012) Influence of dye type and salinity on aerobic decolorization of azo dyes by microbial consortium and the community dynamics. Wat Sci Technol 65(8):1375–1382

    Article  Google Scholar 

  • Tehrani-Bagha AR, Mahmoodi NM, Menger FM (2010) Degradation of a persistent organic dye from colored textile wastewater by ozonation. Desalination 260:34–38

    Article  CAS  Google Scholar 

  • Todeschini R, Consonni V (2009) Handbook of molecular descriptors. Wiley–VCH, Weinheim

    Google Scholar 

  • Toprak F, Armagan B, Cakici A (2012) Systematic approach for the optimal process conditions of Reactive Red 198 adsorption by pistachio nut shell using Taguchi method. Desalination Water Treat 48:96–105

    Article  CAS  Google Scholar 

  • Turesky RJ, Le Marchand L (2011) Metabolism and biomarkers of heterocyclic aromatic amines in molecular epidemiology studies: lessons learned from aromatic amines. Chem Res Toxicol 24:1169–1214

    Article  CAS  Google Scholar 

  • Umbuzeiro GA, Freeman HS, Warrant SH, Oliveira DP, Terao Y, Watanabe T, Claxton LD (2005) The contribution of azo dyes to the mutagenic activity of the Cristais River. Chemosphere 60:55–64

    Article  CAS  Google Scholar 

  • USEPA T.E.S.T., http://www.epa.gov/nrmrl/std/qsar/qsar.html#TEST (2012), accessed November 2012

  • Vautier M, Guillard C, Herrmann JM (2001) Photocatalytic degradation of dyes in water: case study of indigo and indigo carmine. J Catal 201:46–59

    Article  CAS  Google Scholar 

  • Verma Y (2008) Acute toxicity assessment of textile dyes and textile and dye industrial effluent using Daphnia magna bioassay. Toxicol Ind Health August 24(7):491–500

    Article  CAS  Google Scholar 

  • Wang LG (2012) Application of activated carbon derived from 'waste' bamboo culms for the adsorption of azo disperse dye: kinetic, equilibrium and thermodynamic studies. J Environ Manage 102:79–87

    Article  CAS  Google Scholar 

  • Wols BA, Vries D (2012) On a QSAR approach for the prediction of priority compound degradation by water treatment processes. Water Sci Technol 66:1446–1453

    Article  CAS  Google Scholar 

  • Zayani G, Bousselmi L, Mhenni F, Ghrabi A (2009) Solar photocatalytic degradation of commercial textile azo dyes: performance of pilot plant scale thin film fixed-bed reactor. Desalination 246:344–352

    Article  CAS  Google Scholar 

  • Zahra A, Imran M, Kanwal F (2012) Comparative adsorption studies of methyl orange using different varieties of melon seeds as adsorbents. Asian J Chem 24(6):2668–2670

    CAS  Google Scholar 

  • Zhou Q, Talaska G, Jaeger M, Bhatnagar VK, Hayes RB, Zenzer TV, Kashyap SR, Lakshmi VM, Kashyap R, Dosemeci M, Hsu FF, Parikh DJ, Davis B, Rothman N (1997) Benzidine–DNA adduct levels in human peripheral white blood cells significantly correlate with levels in exfoliated urothelial cells. Mutat Res 393:199–205

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Pons.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byberg, R., Cobb, J., Martin, L.D. et al. Comparison of photocatalytic degradation of dyes in relation to their structure. Environ Sci Pollut Res 20, 3570–3581 (2013). https://doi.org/10.1007/s11356-013-1551-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-1551-y

Keywords

Navigation