Skip to main content
Log in

Characterization of polychlorinated naphthalenes in stack gas emissions from waste incinerators

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Nine typical waste incinerating plants were investigated for polychlorinated naphthalene (PCN) contents in their stack gas. The incinerators investigated include those used to incinerate municipal solid, aviation, medical, and hazardous wastes including those encountered in cement kilns. PCNs were qualified and quantified by isotope dilution high resolution gas chromatography–high resolution mass spectrometry techniques. An unexpectedly high concentration of PCNs (13,000 ng Nm−3) was found in the stack gas emitted from one waste incinerator. The PCN concentrations ranged from 97.6 to 874 ng Nm−3 in the other waste incinerators. The PCN profiles were dominated by lower chlorinated homologues, with mono- to tetra-CNs being the main homologues present. Furthermore, the relationships between PCNs and other unintentional persistent organic pollutants involving polychlorinated dibenzo-p-dioxins and dibenzofurans, polychlorinated biphenyls, hexachlorobenzene, and pentachlorobenzene were examined to ascertain the closeness or otherwise of their formation mechanisms. A good correlation was observed between ΣPCN (tetra- to octa-CN) and ΣPCDF (tetra- to octa-CDF) concentrations suggesting that a close relationship may exist between their formation mechanisms. The results would provide an improved understanding of PCN emissions from waste incinerators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abad E, Caixach J, Rivera J (1999) Dioxin like compounds from municipal waste incinerator emissions: assessment of the presence of polychlorinated naphthalenes. Chemosphere 38:109–120

    Article  CAS  Google Scholar 

  • Ba T, Zheng M, Zhang B, Liu W, Su G, Liu G, Xiao K (2010) Estimation and congener-specific characterization of polychlorinated naphthalene emissions from secondary nonferrous metallurgical facilities in China. Environ Sci Technol 44:2441–2446

    Article  CAS  Google Scholar 

  • Behnisch PA, Hosoe K, Shiozaki K, Kiryu T, Komatsu K, Schramm KW, Sakai S (2002) Melting and incineration plants of municipal waste—chemical and biochemical diagnosis of thermal processing samples (emission, residues). Environ Sci Pollut Res 9:337–344

    Article  CAS  Google Scholar 

  • Bidleman TF, Helm PA, Braune BM, Gabrielsen GW (2010) Polychlorinated naphthalenes in polar environments—a review. Sci Total Environ 408:2919–2935

    Article  CAS  Google Scholar 

  • Blankenship AL, Kannan K, Villalobos SA, Villeneuve DL, Falandysz J, Imagawa T, Jakobsson E, Giesy JP (2000) Relative potencies of individual polychlorinated naphthalenes and halowax mixtures to induce Ah receptor-mediated responses. Environ Sci Technol 34:3153–3158

    Article  CAS  Google Scholar 

  • Domingo JL (2004) Polychlorinated naphthalenes in animal aquatic species and human exposure through the diet: a review. J Chromatogr A 1054:327–334

    Article  CAS  Google Scholar 

  • Falandysz J (1998) Polychlorinated naphthalenes: an environmental update. Environ Pollut 101:77–90

    Article  CAS  Google Scholar 

  • Falandysz J, Kawano M, Ueda M, Matsuda M, Kannan K, Giesy JP, Wakimoto T (2000) Composition of chloronaphthalene congeners in technical chloronaphthalene formulations of the Halowax series. J Environ Sci Health, Part A: Tox Hazard Subst Environ Eng 35:281–298

    Article  Google Scholar 

  • Falandysz J, Nose K, Ishikawa Y, Lukaszewicz E, Yamashita N, Noma Y (2006a) HRGC/HRMS analysis of chloronaphthalenes in several batches of Halowax 1000, 1001, 1013, 1014 and 1099. J Environ Sci Health, Part A: Tox Hazard Subst Environ Eng 41:2237–2255

    Article  CAS  Google Scholar 

  • Falandysz J, Nose K, Ishikawa Y, Lukaszewicz E, Yamashita N, Noma Y (2006b) Chloronaphthalenes composition of several batches of Halowax 1051. J Environ Sci Health, Part A: Tox Hazard Subst Environ Eng 41:291–301

    Article  CAS  Google Scholar 

  • Guo L, Zhang B, Xiao K, Zhang Q, Zheng M (2008) Levels and distributions of polychlorinated naphthalenes in sewage sludge of urban wastewater treatment plants. Chin Sci Bull 53:508–513

    Article  CAS  Google Scholar 

  • Hanberg A, Waern F, Asplund L, Haglund E, Safe S (1990) Swedish dioxin survey: determination of 2,3,7,8-TCDD toxic equivalent factors for some polychlorinated-biphenyls and naphthalenes using biological tests. Chemosphere 20:1161–1164

    Article  CAS  Google Scholar 

  • Helm PA, Bidleman TF (2003) Current combustion-related sources contribute to polychlorinated naphthalene and dioxin-like polychlorinated biphenyl levels and profiles in air in Toronto, Canada. Environ Sci Technol 37:1075–1082

    Article  CAS  Google Scholar 

  • Helm PA, Bidleman TF, Li HH, Fellin P (2004) Seasonal and spatial variation of polychlorinated naphthalenes and Non-/Mono-Ortho-substituted polychlorinated biphenyls in arctic Air. Environ Sci Technol 38:5514–5521

    Article  CAS  Google Scholar 

  • Iino F, Tsuchiya K, Imagawa T, Gullett BK (2001) An isomer prediction model for PCNs, PCDD/Fs, and PCBs from municipal waste incinerators. Environ Sci Technol 35:3175–3181

    Article  CAS  Google Scholar 

  • Imagawa T, Lee CW (2001) Correlation of polychlorinated naphthalenes with polychlorinated dibenzofurans formed from waste incineration. Chemosphere 44:1511–1520

    Article  CAS  Google Scholar 

  • Jansson S, Fick J, Marklund S (2008) Formation and chlorination of polychlorinated naphthalenes (PCNs) in the post-combustion zone during MSW combustion. Chemosphere 72:1138–1144

    Article  CAS  Google Scholar 

  • Jansson S, Antti H, Marklund S, Tysklind M (2009) Multivariate relationships between molecular descriptors and isomer distribution patterns of PCDD/Fs formed during MSW combustion. Environ Sci Technol 43:7032–7038

    Article  CAS  Google Scholar 

  • Liu G, Zheng M, Liu W, Wang C, Zhang B, Gao L, Su G, Xiao K, Lv P (2009) Atmospheric emission of PCDD/Fs, PCBs, hexachlorobenzene, and pentachlorobenzene from the coking industry. Environ Sci Technol 43:9196–9201

    Article  CAS  Google Scholar 

  • Liu G, Zheng M, Lv P, Liu W, Wang C, Zhang B, Xiao K (2010) Estimation and characterization of polychlorinated naphthalene emission from coking industries. Environ Sci Technol 44:8156–8161

    Article  CAS  Google Scholar 

  • Liu G, Zheng M, Du B, Nie Z, Zhang B, Liu W, Li C, Hu J (2012) Atmospheric emission of polychlorinated naphthalenes from iron ore sintering processes. Chemosphere 89:467–472

    Article  CAS  Google Scholar 

  • Marti-Cid R, Llobet JM, Castell V, Domingo JL (2008) Human exposure to polychlorinated naphthalenes and polychlorinated diphenyl ethers from foods in Catalonia, Spain: temporal trend. Environ Sci Technol 42:4195–4201

    Article  CAS  Google Scholar 

  • Ni Y, Zhang H, Fan S, Zhang X, Zhang Q, Chen J (2009) Emissions of PCDD/Fs from municipal solid waste incinerators in China. Chemosphere 75:1153–1158

    Article  CAS  Google Scholar 

  • Noma Y, Yamamoto T, Sakai SI (2004) Congener-specific composition of polychlorinated naphthalenes, coplanar PCBs, dibenzo-p-dioxins, and dibenzofurans in the halowax series. Environ Sci Technol 38:1675–1680

    Article  CAS  Google Scholar 

  • Oh J-E, Gullett B, Ryan S, Touati A (2007) Mechanistic relationships among PCDDs/Fs, PCNs, PAHs, CIPhs, and CIBzs in municipal waste incineration. Environ Sci Technol 41:4705–4710

    Article  CAS  Google Scholar 

  • Olivero-Verbel J, Vivas-Reyes R, Pacheco-Londoño L, Johnson-Restrepo B, Kannan K (2004) Discriminant analysis for activation of the aryl hydrocarbon receptor by polychlorinated naphthalenes. J Mol Struct (THEOCHEM) 678:157–161

    Article  CAS  Google Scholar 

  • Pan X, Tang J, Chen Y, Li J, Zhang G (2011) Polychlorinated naphthalenes (PCNs) in riverine and marine sediments of the Laizhou Bay area, North China. Environ Pollut 159:3515–3521

    Article  CAS  Google Scholar 

  • Park H, Kang J-H, Baek S-Y, Chang Y-S (2010) Relative importance of polychlorinated naphthalenes compared to dioxins, and polychlorinated biphenyls in human serum from Korea: contribution to TEQs and potential sources. Environ Pollut 158:1420–1427

    Article  CAS  Google Scholar 

  • Schneider M, Stieglitz L, Will R, Zwick G (1998) Formation of polychlorinated naphthalenes on fly ash. Chemosphere 37:2055–2070

    Article  CAS  Google Scholar 

  • Shin SK, Kim KS, You JC, Song BJ, Kim JG (2006) Concentration and congener patterns of polychlorinated biphenyls in industrial and municipal waste incinerator flue gas, Korea. J Hazard Mater 133:53–59

    Article  CAS  Google Scholar 

  • Takasuga T, Inoue T, Ohi E, Kumar KS (2004) Formation of polychlorinated naphthalenes, dibenzo-p-dioxins, dibenzofurans, biphenyls, and organochlorine pesticides in thermal processes and their occurrence in ambient air. Arch Environ Contam Toxicol 46:419–431

    Article  CAS  Google Scholar 

  • Villeneuve DL, Kannan K, Khim JS, Falandysz J, Nikiforov VA, Blankenship AL, Giesy JP (2000) Relative potencies of individual polychlorinated naphthalenes to induce dioxin-like responses in fish and mammalian in vitro bioassays. Arch Environ Contam Toxicol 39:273–281

    Article  CAS  Google Scholar 

  • Weber R, Iino F, Imagawa T, Takeuchi M, Sakurai T, Sadakata M (2001) Formation of PCDF, PCDD, PCB, and PCN in de novo synthesis from PAH: mechanistic aspects and correlation to fluidized bed incinerators. Chemosphere 44:1429–1438

    Article  CAS  Google Scholar 

  • Węgiel M, Chrząszcz R, Maślanka A, Grochowalski A (2011) Study on the determination of PCDDs/Fs and HCB in exhaust gas. Chemosphere 85:481–486

    Article  Google Scholar 

  • Yamashita N, Kannan K, Imagawa T, Miyazaki A, Giesy JP (2000) Concentrations and profiles of polychlorinated naphthalene congeners in eighteen technical polychlorinated biphenyl preparations. Environ Sci Technol 34:4236–4241

    Article  CAS  Google Scholar 

  • Yan M, Li XD, Lu SY, Chen T, Chi Y, Yan JH (2011) Persistent organic pollutant emissions from medical waste incinerators in China. J Mater Cy Waste Manag 13:213–218

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for the present work was obtained from the National 973 Program (nos. 2011CB201500 and 2009CB421606), Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-YW-JS406) and National Natural Science Foundation of China (no. 21037003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghui Zheng.

Additional information

Responsible editor: Gerhard Lammel

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Sample preparation and analysis for PCDD/Fs, PCBs, HxCBz and PeCBz; relative potency factors (RPFs) of the PCN congeners (Table S1); recoveries of sampling and extraction standards in the samples (Table S2); concentrations of PCDD/F, PCB, HxCBz, and PeCBz in the stack gas samples (Table S3) and correlation among the concentrations of ΣPCNs and other U-POPs (Fig. S1); ratios of some characteristic PCN congeners in technical formulations of PCNs and PCBs (Fig. S2). DOCX 210 kb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, J., Zheng, M., Liu, W. et al. Characterization of polychlorinated naphthalenes in stack gas emissions from waste incinerators. Environ Sci Pollut Res 20, 2905–2911 (2013). https://doi.org/10.1007/s11356-012-1218-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-012-1218-0

Keywords

Navigation