Skip to main content
Log in

The impact of zero-valent iron nanoparticles upon soil microbial communities is context dependent

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Nanosized zero-valent iron (nZVI) is an effective land remediation tool, but there remains little information regarding its impact upon and interactions with the soil microbial community. nZVI stabilised with sodium carboxymethyl cellulose was applied to soils of three contrasting textures and organic matter contents to determine impacts on soil microbial biomass, phenotypic (phospholipid fatty acid (PLFA)), and functional (multiple substrate-induced respiration (MSIR)) profiles. The nZVI significantly reduced microbial biomass by 29 % but only where soil was amended with 5 % straw. Effects of nZVI on MSIR profiles were only evident in the clay soils and were independent of organic matter content. PLFA profiling indicated that the soil microbial community structure in sandy soils were apparently the most, and clay soils the least, vulnerable to nZVI suggesting a protective effect imparted by clays. Evidence of nZVI bactericidal effects on Gram-negative bacteria and a potential reduction of arbuscular mycorrhizal fungi are presented. Data imply that the impact of nZVI on soil microbial communities is dependent on organic matter content and soil mineral type. Thereby, evaluations of nZVI toxicity on soil microbial communities should consider context. The reduction of AM fungi following nZVI application may have implications for land remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AM:

Arbuscular mycorrhizal fungi

BMR:

Basal metabolic rate

CMC:

Carboxymethyl cellulose

FAME:

Fatty acid methyl ester

MSIR:

Multiple substrate-induced respiration

nZVI:

Nanoscale zero-valent iron

PC:

Principal component

PLFA:

Phospholipid fatty acid

References

  • Auffan M, Bottero J (2009) Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro. Environ Pollut 157(4):1127–1133. doi:10.1016/j.envpol.2008.10.002

    Article  CAS  Google Scholar 

  • Bai X, Wang Z (2009) Immobilization of nanoscale Fe0 in and on PVA microspheres for nitrobenzene reduction. J Hazard Mater 172(2–3):1357–1364. doi:10.1016/j.jhazmat.2009.08.004

    Article  CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem 37:911–917

    Article  CAS  Google Scholar 

  • Brar SK, Surampalli RY (2010) Engineered nanoparticles in wastewater and wastewater sludge—evidence and impacts. Waste Manage 30(3):504–520. doi:10.1016/j.wasman.2009.10.012

    Article  CAS  Google Scholar 

  • Cullen LG, Shaw LJ (2011) Assessing the impact of nano- and micro-scale zerovalent iron particles on soil microbial activities: particle reactivity interferes with assay conditions and interpretation of genuine microbial effects. Chemosphere 82(11):1675–1682. doi:10.1016/j.chemosphere.2010.11.009

    Article  CAS  Google Scholar 

  • Degens BP, Harris JA (1997) Development of a physiological approach to measuring the catabolic diversity of soil microbial communities. Soil Biol Biochem 29(9–10):1309–1320. doi:10.1016/S0038-0717(97)00076-X

    Article  CAS  Google Scholar 

  • Dinesh R, Hamza S (2012) Engineered nanoparticles in the soil and their potential implications to microbial activity. Geoderma 173–174:19–27. doi:10.1016/j.geoderma.2011.12.018

    Article  Google Scholar 

  • Dowling NJE, White DC (1986) Phospholipid ester linked fatty acid biomarkers of acetate-oxidising sulphate reducers and other sulphate forming bacteria. J Gen Microbiol 132:1815–1825

    CAS  Google Scholar 

  • Du W, Guo H (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13:822–828

    Article  CAS  Google Scholar 

  • Frostegård A, Bååth E (1996) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fertil Soils 22:59–65

    Article  Google Scholar 

  • Frostegård A, Bååth E (1993) Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl Environ Microbiol 59(11):3605–3617

    Google Scholar 

  • Frostegård Å, Bååth E (2011) Use and misuse of PLFA measurements in soils. Soil Biol Biochem 43(8):1621–1625. doi:10.1016/j.soilbio.2010.11.021

    Article  Google Scholar 

  • Ge Y, Holden PA (2011) Evidence for the negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ Sci Technol 45:1659–1664

    Article  CAS  Google Scholar 

  • Gordon T, Margel S (2011) Synthesis and characterization of zinc/iron oxide composite nanoparticles and their antibacterial properties. Colloids Surf Physicochem Eng Aspects 374(1–3):1–8. doi:10.1016/j.colsurfa.2010.10.015

    Article  CAS  Google Scholar 

  • Grieger KD, Baun A (2010) Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off? J Contam Hydrol 118(3–4):165–183. doi:10.1016/j.jconhyd.2010.07.011

    Article  CAS  Google Scholar 

  • Hänsch M, Emmerling C (2010) Effects of silver nanoparticles on the microbiota and enzyme activity in soil. J Plant Nutr Soil Sci 173(4):554–558. doi:10.1002/jpln.200900358

    Article  Google Scholar 

  • He F, Zhao D (2007) Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environ Sci Technol 41(17):6216–6221

    Article  CAS  Google Scholar 

  • Jaisi D, Elimelech M (2009) Single-walled carbon nanotubes exhibit limited transport in soil columns. Environ Sci Technol 43:9161–9166

    Article  CAS  Google Scholar 

  • Jenkinson DS, Powlson DS (1976) The effects of biocidal treatments on metabolism in soil—I. fumigation with chloroform. Soil Biol Biochem 8(3):167–177. doi:10.1016/0038-0717(76)90001-8

    Article  CAS  Google Scholar 

  • Joergensen RG (1996) The fumigation-extraction method to estimate soil microbial biomass: calibration of the kEC value. Soil Biol Biochem 28(1):25–31. doi:10.1016/0038-0717(95)00102-6

    Article  CAS  Google Scholar 

  • Johansen A, Winding A (2008) Effects of C60 fullerene nanoparticles on soil bacteria and protozoans. Environ Toxicol Chem 27(9):1895–1903. doi:10.1897/07-375.1

    Article  CAS  Google Scholar 

  • Joo SH, Al-Abed SR, Luxton T (2009) Influence of carboxymethyl cellulose for the transport of titanium dioxide nanopoarticles in clean silica and mineral-coated sands. Environ Sci Technol 43:4954–4959

    Article  CAS  Google Scholar 

  • Kaiser C, Richter A (2010) Negligible contribution from roots to soil-borne phospholipid fatty acid fungal biomarkers 18:2ω6,9 and 18:1ω9. Soil Biol Biochem 42(9):1650–1652. doi:10.1016/j.soilbio.2010.05.019

    Article  CAS  Google Scholar 

  • Kirschling TL, Tilton RD (2010) Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials. Environ Sci Technol 44:3474–3480

    Article  CAS  Google Scholar 

  • Klaine SJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27(9):1825–1851. doi:10.1897/08-090.1

    Article  CAS  Google Scholar 

  • Kumar N, Walker VK (2011) Perturbation of an arctic soil microbial community by metal nanoparticles. J Hazard Mater 190(1–3):816–822. doi:10.1016/j.jhazmat.2011.04.005

    Article  CAS  Google Scholar 

  • Lee CL, Sedlak DL (2008) Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environ Sci Technol 42:4927–4933. doi:10.1021/es800408u

    Article  CAS  Google Scholar 

  • Li H, Jiang G (2009) Effects of waterborne nano-iron on medaka (oryzias latipes): antioxidant enzymatic activity, lipid peroxidation and histopathology. Ecotoxicol Environ Saf 72(3):684–692. doi:10.1016/j.ecoenv.2008.09.027

    Article  CAS  Google Scholar 

  • Mueller NC, Nowack B (2012) Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environ Sci Pollut Res 19:550–558. doi:10.1007/s11356-011-0576-3

    Article  CAS  Google Scholar 

  • Naja G, Hawari J (2009) Dynamic and equilibrium studies of the RDX removal from soil using CMC-coated zerovalent iron nanoparticles. Environ Pollut 157(8–9):2405–2412. doi:10.1016/j.envpol.2009.03.019

    Article  CAS  Google Scholar 

  • Olsson PA, Olsson PA (1999) Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiol Ecol 29(4):303–310. doi:10.1111/j.1574-6941.1999.tb00621.x

    Article  CAS  Google Scholar 

  • Pawlett M, Harris JA (2009) The effects of earthworms and liming on soil microbial communities. Biol Fertil Soils 45:361–369

    Article  Google Scholar 

  • Pédrot M, Henin O (2011) How does organic matter constrain the nature, size and availability of Fe nanoparticles for biological reduction? J Colloid Interface Sci 359(1):75–85. doi:10.1016/j.jcis.2011.03.067

    Article  Google Scholar 

  • Peralta-Videa JR, Gardea-Torresdey JL (2011) Nanomaterials and the environment: a review for the biennium 2008–2010. J Hazard Mater 186(1):1–15. doi:10.1016/j.jhazmat.2010.11.020

    Article  CAS  Google Scholar 

  • Ritz K, Harris JA, Pawlett M, Stone D (2006) Catabolic profiles as an indicator of soil microbial functional diversity. Environment Agency Science Report SC040063/R

  • Rowell, D. L. (1994). Section 1.3 sampling from a field or plot. In: Soil science methods and applications (The University of Michigan). Longman Scientific & Technical, Harlow. pp. 14–15

  • Saad R, Hawari J (2010) Degradation of trinitroglycerin (TNG) using zero-valent iron nanoparticles/nanosilica SBA-15 composite (ZVINs/SBA-15). Chemosphere 81(7):853–858. doi:10.1016/j.chemosphere.2010.08.012

    Article  CAS  Google Scholar 

  • Shah V, Seal S (2010) Influence of iron and copper nanoparticle powder on the production of lignocellulose degrading enzymes in the fungus trametes versicolor. J Hazard Mater 178(1–3):1141–1145. doi:10.1016/j.jhazmat.2010.01.141

    Article  CAS  Google Scholar 

  • Solovitch N, Bottero J (2010) Concurrent aggregation and deposition of TiO2 nanoparticles in a sandy porus media. Environ Sci Technol 444897–4902

  • Tong Z, Turco RF (2007) Impact of fullerene (C60) on a soil microbial community. Environ Sci Technol 41(8):2985–2991

    Article  CAS  Google Scholar 

  • Tunlid A, White DC (1992) Biochemical analysis of biomass, community structure, nutritional status, and metabolic activity of microbial communities in soil. In: Stotzky G, Bollag JM (eds) Soil Biochemistry. Marcel Dekker, New York, pp 229–262

    Google Scholar 

  • Vance ED, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19(6):703–707. doi:10.1016/0038-0717(87)90052-6

    Article  CAS  Google Scholar 

  • Wang W, Li T (2010) Reactivity characteristics of poly(methyl methacrylate) coated nanoscale iron particles for trichloroethylene remediation. J Hazard Mater 173(1–3):724–730. doi:10.1016/j.jhazmat.2009.08.145

    Article  CAS  Google Scholar 

  • Xiu Z, Alvarez PJJ (2010) Effects of nano-scale zero-valent iron particles on a mixed culture dechlorinating trichloroethylene. Bioresour Technol 101(4):1141–1146. doi:10.1016/j.biortech.2009.09.057

    Article  CAS  Google Scholar 

  • Zelles L, Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biol Fertil Soils 29:111–129

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to NERC for financial support through the Environmental Nanoscience Initiative Programme (grant ref: NE/F011784/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Pawlett.

Additional information

Responsible editor: Robert Duran

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pawlett, M., Ritz, K., Dorey, R.A. et al. The impact of zero-valent iron nanoparticles upon soil microbial communities is context dependent. Environ Sci Pollut Res 20, 1041–1049 (2013). https://doi.org/10.1007/s11356-012-1196-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-012-1196-2

Keywords

Navigation