Skip to main content
Log in

Removal of heavy metal ions from wastewater by a novel HEA/AMPS copolymer hydrogel: preparation, characterization, and mechanism

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study aims to synthesize 2-hydroxyethyl acrylate (HEA) and 2-acrylamido-2-methylpropane sulfonic (AMPS) acid-based hydrogels by gamma radiation and to investigate their swelling behavior and heavy metal ion adsorption capabilities. The copolymer hydrogels prepared were characterized via scanning electron microscopy, Fourier transformed infrared spectra, thermal gravimetric analysis, and X-ray photoelectron spectroscopy. The research showed that the copolymer hydrogel was beneficial for permeation due to its porous structure. In addition, the experimental group A-2-d [70 % water volume ratio and (n (AMPS)/n (HEA)) = 1:1] was an optimal adsorbent. The optimal pH was 6.0 and the optimal temperature was 15 °C. Pb2+, Cd2+, Cu2+, and Fe3+ achieved adsorption equilibriums within 24 h, whereas Cr3+ reached equilibrium in 5 h. Pb2+, Cd2+, Cr3+, and Fe3+ maximum load capacity was 1,000 mg L−1, whereas the Cu2+ maximum capacity was 500 mg L−1. The priority order in the multicomponent adsorption was Cr3+>Fe3+>Cu2+>Cd2+>Pb2+. The adsorption process of the HEA/AMPS copolymer hydrogel for the heavy metal ions was mainly due to chemisorption, and was only partly due to physisorption, according to the pseudo-second-order equation and Langmuir adsorption isotherm analyses. The HEA/AMPS copolymer hydrogel was confirmed to be an effective adsorbent for heavy metal ion adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abdel-Halim ES, Al-Deyab SS (2011) Hydrogel from crosslinked polyacrylamide/guar gum graft copolymer for sorption of hexavalent chromium ion. Carbohyd Polym 86:1306–1312

    Article  CAS  Google Scholar 

  • Abdel-Halim ES, El-Rafie MH, Al-Deyab SS (2011) Polyacrylamide/guar gum graft copolymer for preparation of silver nanoparticles. Carbohyd Polym 85:692–697

    Article  CAS  Google Scholar 

  • Aguado J, Arsuaga JM, Arencibia A, Lindo M, Gascon V (2009) Aqueous heavy metals removal by adsorption on amine-functionalized mesoporous silica. J Hazard Mater 163:213–221

    Article  CAS  Google Scholar 

  • Ali I (2010) The quest for active carbon adsorbent substitutes: inexpensive adsorbents for toxic metal ions removal from wastewater. Sepn Purfn Rev 39:95–171

    Article  CAS  Google Scholar 

  • Ali I, Gupta VK (2006) Advances in water treatment by adsorption technology. Nat Protoco 1:2661–2667

    Article  CAS  Google Scholar 

  • Bozkurt A, Ekinci O, Meyer WH (2003) Synthesis and characterization of proton-conducting copolymers on the basis of vinylpyrrolidone and acrylamido sulfonic acid. J Appl Polym Sci 90:3347–3353

    Article  CAS  Google Scholar 

  • Cao J, Tan Y, Che Y, Xin H (2010) Novel complex gel beads composed of hydrolyzed polyacrylamide and chitosan: an effective adsorbent for the removal of heavy metal from aqueous solution. Bioresour Technol 101:2558–2561

    Article  CAS  Google Scholar 

  • Chen H, Xu ZY, Wan HQ, Zheng JZ, Yin DQ, Zheng SR (2010) Aqueous bromate reduction by catalytic hydrogenation over Pd/Al2O3 catalysts. Appl Catal B-Environ 96:307–313

    Article  CAS  Google Scholar 

  • El-Hag Ali A, Shawky HA, Abd El Rehim HA, Hegazy EA (2003) Synthesis and characterization of PVP/AAc copolymer hydrogel and its applications in the removal of heavy metals from aqueous solution. Eur Polym J 39:2337–2344

    Article  CAS  Google Scholar 

  • Essawy HA, Ibrahim HS (2004) Synthesis and characterization of poly (vinylpyrrolidone-co-methylacrylate) hydrogel for removal and recovery of heavy metal ions from wastewater. React Funct Polym 61:421–432

    Article  CAS  Google Scholar 

  • Freudlich H (1907) Ueber die adsorption in Loesungen. J Phys Chem C 7:385–470

    Google Scholar 

  • Gupta VK, Ali I (2000) Utilisation of bagasse fly ash (a sugar industry waste) for the removal of copper and zinc from wastewater. Sepn Purifn Technol 18:131–140

    Article  CAS  Google Scholar 

  • Gupta VK, Ali I (2004) Removal of lead and chromium from wastewater using bagasse fly ash—a sugar industry waste. J Colloid Interf Sci 271:321–328

    Article  CAS  Google Scholar 

  • Gupta VK, Rastogi A (2008a) A Sorption and desorption studies of chromium (VI) from nonviable cyano bacterium Nostoc muscorum biomass. J Hazard Mater 154:347–354

    Article  CAS  Google Scholar 

  • Gupta VK, Rastogi A (2008b) Equilibrium and kinetic modelling of cadmium(II) biosorption by nonliving algal biomass Oedogonium sp. from aqueous phase. J Hazard Mater 153:759–766

    Article  CAS  Google Scholar 

  • Gupta VK, Rastogi A (2009) Biosorption of hexavalent chromium by raw and acid-treated green alga Oedogonium hatei from aqueous solutions. J Hazard Mater 163:396–402

    Article  CAS  Google Scholar 

  • Gupta VK, Suhas (2009) Application of low cost adsorbents for dye removal—a review. J Environ Manage 90:2313–2342

    Article  CAS  Google Scholar 

  • Gupta VK, Mohan D, Sharma S, Park KT (1999) Removal of chromium(VI) from electroplating industry wastewater using bagasse fly ash—a sugar industry waste material. Environmentalist 19:129–136

    Article  Google Scholar 

  • Gupta VK, Gupta M, Sharma S (2001) Process development for the removal of lead and chromium from aqueous solutions using red mud—an aluminum industry waste. Water Res 35:1125–1134

    Article  CAS  Google Scholar 

  • Gupta VK, Jain CK, Ali I, Sharma M, Saini VK (2003) Removal of cadmium and nickel from wastewater using bagasse fly ash—a sugar industry waste. Water Res 37:4038–4044

    Article  CAS  Google Scholar 

  • Gupta VK, Mittal A, Gajbe V, Mittal J (2006a) Removal and recovery of the hazardous azo dye acid orange 7 through adsorption over waste materials: bottom ash and de-oiled soya. Ind Eng Chem Res 45:1446–1453

    Article  CAS  Google Scholar 

  • Gupta VK, Mittal A, Kurup L, Mittal J (2006b) Adsorption of a hazardous dye, erythrosine, over hen feathers. J Colloid Interf Sci 304:52–57

    Article  CAS  Google Scholar 

  • Gupta VK, Ali I, Saini VK (2007a) Adsorption studies on the removal of Vertigo Blue 49 and Orange DNA13 from aqueous solutions using carbon slurry developed from a waste material. J Colloid Interf Sci 315:87–93

    Article  CAS  Google Scholar 

  • Gupta VK, Jain R, Mittal A, Mathur M, Sikarwar S (2007b) Photochemical degradation of the hazardous dye Safranin-Tusing TiO2 catalyst. J Colloid Interf Sci 309:464–469

    Article  CAS  Google Scholar 

  • Gupta VK, Jain R, Varshney S (2007c) Electrochemical removal of the hazardous dye Reactofix Red 3 BFN from industrial effluents. Colloid Interf Sci 312:292–296

    Article  CAS  Google Scholar 

  • Gupta VK, Carrott PJM, Ribeiro Carrott MML (2009) Low cost adsorbents: growing approach to wastewater treatment—a review. Crit Rev Env Sci Tec 39:783–842

    Article  Google Scholar 

  • Gupta VK, Rastogi A, Nayak A (2010) Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low cost fertilizer industry waste material. J Colloid Interf Sci 342:135–141

    Article  CAS  Google Scholar 

  • Gupta VK, Saleh TA, Ali I, Nayak A, Agarwal S (2012) Chemical treatment technologies for waste-water recycling—an overview. RSC Adv. doi:10.1039/C2RA20340E

  • Huang F, Zheng Y, Yang Y (2007) Study on macromolecular metal complexes: synthesis, characterization, and fluorescence properties of stoichiometric complexes for rare earth coordinated with poly (acrylic acid). J Appl Polym Sci 103:351–357

    Article  CAS  Google Scholar 

  • Ijagbemi CO, Baek MH, Kim DS (2010) Adsorptive performance of un-calcined sodium exchanged and acid modified montmorillonite for Ni2+ removal: equilibrium, kinetics, thermodynamics and regeneration studies. J Hazard Mater 174:746–755

    Article  CAS  Google Scholar 

  • Ju XJ, Zhang SB, Zhou MY, Xie R, Yang L, Chu LY (2009) Novel heavy metal adsorption material: ion-recognition P(NIPAM-co-BCAm) hydrogels for removal of lead(II) ions. J Hazard Mater 167:114–118

    Article  CAS  Google Scholar 

  • Kasgoz H, Ozgumus S, Orbay M (2003) Modified polyacrylamide hydrogels and their application in removal of heavy metal ions. Polymer 44:1785–1793

    Article  CAS  Google Scholar 

  • Kok Yetimoglu E, Kahraman MV, Ercan O, Akdemir ZS, Kayaman Apohan N (2007) N-vinylpyrrolidone/acrylic acid/2-acrylamido-2-methylpropane sulfonic acid based hydrogels: synthesis, characterization and their application in the removal of heavy metals. React Funct Polym 67:451–460

    Article  Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  • Miretzky P, Saralegui A, Cirelli AF (2006) Simultaneous heavy metal removal mechanism by dead macrophytes. Chemosphere 62:247–254

    Article  CAS  Google Scholar 

  • Mohan S, Sreelakshmi G (2008) Fixed bed column study for heavy metal removal using phosphate treated rice husk. J Hazard Mater 153:75–82

    Article  CAS  Google Scholar 

  • Ngah WS, Kamari A, Koay YJ (2004) Equilibrium and kinetics studies of adsorption of copper (II) on chitosan and chitosan/PVA beads. Int J Biol Macromol 34:155–161

    Article  Google Scholar 

  • Osifo PO, Webster A, van der Merwe H, Neomagus HW, van der Gun MA, Grant DM (2008) The influence of the degree of cross-linking on the adsorption properties of chitosan beads. Bioresour Technol 99:7377–7382

    Article  CAS  Google Scholar 

  • Pourjavadi A, Barzegar S (2009) Synthesis and evaluation of pH and thermosensitive pectin-based superabsorbent hydrogel for oral drug delivery systems. Starch 61:161–172

    Article  CAS  Google Scholar 

  • Rivas BL, Castro A (2003) Preparation and adsorption properties of resins containing amine, sulfonic acid, and carboxylic acid moieties. J Appl Polym Sci 90:700–705

    Article  CAS  Google Scholar 

  • Rueda CJ, Komber H, Cedron JC, Voit B, Shevtsova G (2003) Synthesis of new hydrogels by copolymerization of poly (2-methyl-2-oxazoline) bis (macromonomers) and N-vinylpyrrolidone. Macromol Chem Phys 204:947–953

    Article  CAS  Google Scholar 

  • Saleh TA, Gupta VK (2012) Column with CNT/magnesium oxide composite for lead (II) removal from water. Environ Sci Pollut Res 19:1224–1228

    Article  CAS  Google Scholar 

  • Srivastava SK, Gupta VK, Mohan D (1997) Removal of lead and chromium by activated slag—a blast-furnace waste. J Environ Eng 123:461–468

    Article  CAS  Google Scholar 

  • Wang Q, Xie X, Zhang X, Zhang J, Wang A (2010) Preparation and swelling properties of pH-sensitive composite hydrogel beads based on chitosan-g-poly (acrylic acid)/vermiculite and sodium alginate for diclofenac controlled release. Int J Biol Macromol 46:356–362

    Article  CAS  Google Scholar 

  • Yildi U, Kemika OF, Hazerb B (2010) The removal of heavy metal ions from aqueous solutions by novel pH-sensitive hydrogels. J Hazard Mater 183:521–532

    Article  Google Scholar 

  • Zhao Y, Su H, Fang L, Tan T (2005) Superabsorbent hydrogels from poly (aspartic acid) with salt-, temperature- and pH-responsiveness properties. Polymer 46:5368–5376

    Article  CAS  Google Scholar 

  • Zheng Y, Wang A (2010) Removal of heavy metals using polyvinyl alcohol semi-IPN poly (acrylic acid)/tourmaline composite optimized with response surface methodology. Chem Eng J 162:186–193

    Article  CAS  Google Scholar 

  • Zheng YA, Huang DJ, Wang AQ (2011) Chitosan-g-poly(acrylic acid) hydrogel with crosslinked polymeric networks for Ni2+ recovery. Anal Chim Acta 687:193–200

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by Research projects of Department of Environmental Protection of Jiangsu Province (no. 201108) and Natural Science Foundation of Jiangsu Province (no. BK2010056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengkui Li.

Additional information

Responsible editor: Vinod Kumar Gupta

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Wang, Y., Wu, N. et al. Removal of heavy metal ions from wastewater by a novel HEA/AMPS copolymer hydrogel: preparation, characterization, and mechanism. Environ Sci Pollut Res 20, 1511–1525 (2013). https://doi.org/10.1007/s11356-012-0973-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-012-0973-2

Keywords

Navigation