Skip to main content

Advertisement

Log in

Effects of land-use-change scenarios on terrestrial carbon stocks in South Korea

  • Original Paper
  • Published:
Landscape and Ecological Engineering Aims and scope Submit manuscript

Abstract

The amount of carbon stored in soil and vegetation varies according to land use. Land-use changes (LUCs) affect those carbon stocks. Changes in carbon stocks also affect greenhouse gas emissions. Predicting LUCs is therefore necessary to establish quantitative targets for carbon dioxide (CO2) reduction. This study attempts to model LUCs and the associated changes in carbon stocks for South Korea between 2005 and 2030. It examines four LUC scenarios suggested by the Intergovernmental Panel on Climate Change. Each scenario is assessed in terms of its effect on South Korean carbon stocks. Under all four scenarios, afforestation leads to carbon sequestration with an average net uptake of 22.4–31.5 MtC. The scenario yielding the highest sequestration rate increase (from 12.4 to 14.1 MtC/year) results in levels of sequestration equal to 8.3 % of South Korea’s 2005 CO2 emissions. This is equivalent to a value of 304 million dollars in the European Union carbon market. Clear differences among the scenarios tested suggest that land use must be regarded as an important factor in any plan for future carbon sequestration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahn S, Han K (2004) Feasibility Study for Estimating the Cost of Carbon Sink in Korea. Environment Institute, Korea

    Google Scholar 

  • Alcamo J (2001) Scenarios as tools for international environmental assessments. Environmental Issue Report No. 24, European Environmental Agency, Copenhagen

  • Arrouays D, Deslais W, Badeau V (2001) The carbon content of topsoil and its geographical distribution in France. Soil Use Manag 17:7–13

    Article  Google Scholar 

  • Bellamy PH, Loveland PJ, Bradley RI, Lark RM, Kirk GJD (2005) Carbon losses from all soils across England and Wales 1978–003. Nature 437:245–248

    Article  CAS  PubMed  Google Scholar 

  • Cho D (2008) Cellular automata based urban landuse change modeling considering development density. J Korean Geogr Soc 41(3):117–133

    Google Scholar 

  • Fang S, Gertner GG, Sun Z, Anderson AA (2005) The impact of interactions in spatial simulation of the dynamics of Urban Sprawl. Landscape Urban Plan 73(4):294–306

    Article  Google Scholar 

  • Feddema JJ, Oleson KW, Bonan GB, Mearns LO, Buja LE, Meehl GA, Washington WM (2005) The importance of land-cover change in simulating future climates. Science 310(5754):1674–1678

    Article  CAS  PubMed  Google Scholar 

  • Freibauer A, Rounsevell MDA, Smith P, Verhagen J (2004) Carbon sequestration in the agricultural soils of Europe. Geoderma 122:1–23

    Article  CAS  Google Scholar 

  • Guo Z, Fang F, Pan Y, Birdsey R (2010) Inventory-based estimates of forest biomass carbon stocks in China: a comparison of three methods. For Ecol Manage 259(7):1225–1231

    Article  Google Scholar 

  • Houghton RA, Hackler JL, Lawrence KT (1999) The U.S. carbon budget: Contributions from land-use change. Science 285(5427):574–578

    Article  CAS  PubMed  Google Scholar 

  • Intergovernmental Panel on Climate Change (1996) Revised IPCC Guideline for National Greenhouse Gas Inventories

  • Intergovernmental Panel on Climate Change (2000) Land use, land-use change and forestry, a special report of the IPCC. Cambridge University Press

  • Intergovernmental Panel on Climate Change (2001) IPCC Special Report on Emissions Scenarios, GRID-Arendal website

  • Intergovernmental Panel on Climate Change (2007) IPCC Fourth Assessment Report: Climate Change

  • Janssens IA, Freibauer A, Schlamadinger B, Ceulemans R, Ciais P, Dolman AJ, Heiman M, Nabuurs GJ, Smith P, Valentini R, Schulze ED (2005) The Carbon Budget of Terrestrial Ecosystems at Country Scale—a European Case Study. Biogeosciences 2:15–26

  • Jeong J, Kim C, Lee W (1998) Soil organic carbon content in forest soils of Korea. J Forest Sci (in Korean) 57:178–183

    Google Scholar 

  • Korea Forest Research Institute (1996) Korean people and Carbon dioxide, 126

  • Korea Forest Research Institute (2006) Development of GHGs Emission Inventory System for climate change convention

  • Lal R (2004) Soil Carbon Sequestration impacts on global climate change and food security. Science 304:1623–1627

    Article  CAS  PubMed  Google Scholar 

  • Lamlom SH, Savidge RA (2003) A reassessment of carbon content in wood: variation within and between 41 North American species. Biomass Bioenergy 25(4):381–388

    Article  CAS  Google Scholar 

  • Lee D, Park C (2009) The Analysis of Potential Reduction of CO2 Emission in Soil and Vegetation. J Korean Soc Environ Restor Technol 12(2):95–105

    Google Scholar 

  • Lee K, Son Y, Kim Y (2001) Greenhouse gas inventory in land-use change and forestry in Korea. J Forest Energy 20(1):53–61

    CAS  Google Scholar 

  • Lettens S, Jv Orshoven, Bv Wesemael, Muys B, Perrin D (2005) Soil organic carbon changes in landscape units of Belgium between 1960 and 2000 with reference to 1990. Glob Change Biol 11:2128–2140

    Article  Google Scholar 

  • Parrotta JA (2002) Restoration and management of degraded tropical forest landscapes. In: Ambasht RS, Ambasht NK (eds) Modern trends in applied terrestrial ecology. Kluwer Academic/Plenum Press, New York, pp 135–148

    Chapter  Google Scholar 

  • Rounsevell MDA, Ewert F, Reginster I, Leemans R, Carter TR (2005) Future scenarios of European agricultural land use. II. Proj Changes Cropland Grassland Agriculture Ecosystem Environ 107(12):117–135

    Article  Google Scholar 

  • Rounsevell MDA, Reginster I, Araújo MB, Carter TR, Dendoncker N, Ewert F, House JI, Kankaanpää S, Leemans R, Metzger MJ, Schmit C, Smith P, Tuck GA (2006) Coherent set of future land use change scenarios for Europe. Agriculture Ecosystem Environ 114(1):57–68

    Article  Google Scholar 

  • Schlamadinger B, Bird N, Johns T, Brown S, Canadell J, Ciccarese L, Dutschke M, Fiedler J, Fischlin A, Fearnside P, Forner C, Freibauer A, Frumhoff P, Hoehne N, Kirschbaum MUF, Labat A, Marland Michaelowa A, Montanarella L, Moutinho P, Murdiyarso D, Pena N, Pingoud K, Rakonczay Z, Rametsteiner E, Rock J, Sanz MJ, Schneider UA, Shvidenko A, Skutsch M, Smith P, Somogyi Z, Trines E, Ward M, Yamagata Y (2007) A synopsis of land use, land-use change and forestry (LULUCF) under the Kyoto protocol and marrakech accords. Environ Sci Policy 10(4):271–282

    Article  Google Scholar 

  • Schulp CJE, Nabuurs GJ, Verburg PH (2008) Future carbon sequestration in Europe: effects of land use change. Agric Ecosyst Environ 127(3–4):251–264

    Article  CAS  Google Scholar 

  • Smith JU, Smith P, Wattenbach M, Zaehle S, Hiederer R, Jones RJA, Montanarella L, Rounsevell MDA, Reginster I, Ewert F (2005a) Projected changes in mineral soil carbon of European croplands and grasslands, 1990–2080. Glob Change Biol 11(12):2141–2152

    Article  Google Scholar 

  • Smith P, Smith JU, Wattenbach M, Meyer J, Lindner M, Zaehle S, Hiederer R, Jones RJA, Montanarella L, Rounsevell MDA, Reginster I, Kankaanpaa S (2005b) Projected changes in mineral soil carbon of European forests, 1990–2100. Can J Soil Sci 86:159–169

    Article  Google Scholar 

  • Smith P, Fang C, Dawson JJC, Moncrieff JB (2008) Impact of global warming on soil organic carbon. Adv Agron 97:1–43

    Article  CAS  Google Scholar 

  • Tavoni M, Sohngen B, Bosetti V (2007) Forestry and the carbon market response to stabilize climate. Energy Policy 35:5346–5353

    Article  Google Scholar 

  • United Nations Framework Convention on Climate Change (2003) Land use, Land-use change and forestry: definitions and modalities for including afforestation and reforestation activities under Article 12 of the Kyoto Protocol. Submissions from Parties, FCCC/SBSTA/2003/MISC, Bonn

  • Verburg PH, Soepboer W, Veldkamp A, Limpiada R, Espaldon V, Mastura SSA (2002) The spatial dynamics of regional land use: the CLUE-S model. Environ Manage 30(3):391–405

    Article  PubMed  Google Scholar 

  • Yim C, Choi D (2002) Predicting micro land use dynamics. A cellular automata modelling Approach, Journal of the Korean planners association 37(4):229–239

    Google Scholar 

  • Zaehle S, Bondeau A, Carter T, Cramer W, Erhard M, Prentice I, Reginster I, Rounsevell M, Sitch S, Smith B, Smith P, Sykes M (2007) Projected changes in terrestrial carbon storage in Europe under climate and land-use change, 1990–2100. Ecosystems 10(3):380–401

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant (07High Tech A01) from High tech Urban Development Program funded by Ministry of Land, Transportation and Maritime Affairs of Korean government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chan Park.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1424 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, D.K., Park, C. & Tomlin, D. Effects of land-use-change scenarios on terrestrial carbon stocks in South Korea. Landscape Ecol Eng 11, 47–59 (2015). https://doi.org/10.1007/s11355-013-0235-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11355-013-0235-6

Keywords

Navigation