Skip to main content
Log in

Camera System Resolution and its Influence on Digital Image Correlation

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Digital image correlation (DIC) uses images from a camera and lens system to make quantitative measurements of the shape, displacement, and strain of test objects. This increasingly popular method has had little research on the influence of the imaging system resolution on the DIC results. This paper investigates the entire imaging system and studies how both the camera and lens resolution influence the DIC results as a function of the system Modulation Transfer Function (MTF). It will show that when making spatial resolution decisions (including speckle size) the resolution limiting component should be considered. A consequence of the loss of spatial resolution is that the DIC uncertainties will be increased. This is demonstrated using both synthetic and experimental images with varying resolution. The loss of image resolution and DIC accuracy can be compensated for by increasing the subset size, or better, by increasing the speckle size. The speckle-size and spatial resolution are now a function of the lens resolution rather than the more typical assumption of the pixel size. The paper will demonstrate the tradeoffs associated with limited lens resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Notes

  1. This is a measure of the lens speed and indicates how much light is allowed through. The steps are defined so that each increasing number allows half the light of the previous number.

References

  1. Schreier HW, Sutton MA (2002) Systematic errors in digital image correlation due to undermatched subset shape functions. Exp Mech 42(3):303–310

    Article  Google Scholar 

  2. Wang ZY, Li HQ, Tong JW, Ruan JT (2007) Statistical analysis of the effect of intensity pattern noise on the displacement measurement precision of digital image correlation using self-correlated images. Exp Mech 47(5):701–707. doi:10.1007/s11340-006-9005-9

    Article  Google Scholar 

  3. Wang YQ, Sutton MA, Bruck HA, Schreier HW (2009) Quantitative error assessment in pattern matching: effects of intensity pattern noise, interpolation, strain and image contrast on motion measurements. Strain 45(2):160–178. doi:10.1111/j.1475-1305.2008.00592.x

    Article  Google Scholar 

  4. Wang YQ, Sutton M, Ke XD, Schreier H, Reu P, Miller T (2011) On error assessment in stereo-based deformation measurements. Exp Mech 51(4):405–422. doi:10.1007/s11340-010-9449-9

    Article  Google Scholar 

  5. Ke XD, Schreier H, Sutton M, Wang Y (2011) Error assessment in stereo-based deformation measurements. Exp Mech 51(4):423–441. doi:10.1007/s11340-010-9450-3

    Article  Google Scholar 

  6. Bornert M, Bremand F, Doumalin P, Dupre JC, Fazzini M, Grediac M, Hild F, Mistou S, Molimard J, Orteu JJ, Robert L, Surrel Y, Vacher P, Wattrisse B (2009) Assessment of digital image correlation measurement errors: methodology and results. Exp Mech 49(3):353–370. doi:10.1007/s11340-008-9204-7

    Article  Google Scholar 

  7. Amiot F, Bornert M, Doumalin P, Dupré JC, Fazzini M, Orteu JJ, Poilâne C, Robert L, Rotinat R, Toussaint E, Wattrisse B, Wienin JS (2013) Assessment of digital image correlation measurement accuracy in the ultimate error regime: main results of a collaborative benchmark. Strain 49(6):483–496. doi:10.1111/str.12054

    Article  Google Scholar 

  8. Tong W (2005) An evaluation of digital image correlation criteria for strain mapping applications. Strain 41(4):167–175

    Article  Google Scholar 

  9. Schreier HW, Garcia D, Sutton MA (2004) Advances in light microscope stereo vision. Exp Mech 44(3):278–288. doi:10.1177/0014485104041546

    Article  Google Scholar 

  10. Hwang C-H, Wang W-C, Chen Y-H, Chung T-H (2013) Estimating measurement errors of the 3D-DIC method. In: ISEM, Taipie, Taiwan

  11. Lava P, Van Paepegem W, Coppieters S, De Baere I, Wang Y, Debruyne D (2013) Impact of lens distortions on strain measurements obtained with 2D digital image correlation. Opt Lasers Eng 51(5):576–584. doi:10.1016/j.optlaseng.2012.12.009

    Article  Google Scholar 

  12. Sutton DA, Orteu JJ, Schreier HW (2009) Image correlation for shape, motion and deformation measurements. Springer, New York

    Google Scholar 

  13. Stanislas M, Okamoto K, Kahler C (2003) Main results of the First International PIV Challenge. Meas Sci Technol 14(10):R63–R89

    Article  Google Scholar 

  14. Goodman JW (2005) Introduction to Fourier Optics. Roberts & Company

  15. Voelz DG (2011) Computational Fourier Optics: a MATLAB tutorial. In: SPIE,

  16. Reu P (2011) Experimental and numerical methods for exact subpixel shifting. Exp Mech 51(4):443–452. doi:10.1007/s11340-010-9417-4

    Article  Google Scholar 

  17. Schreier HW, Braasch JR, Sutton MA (2000) Systematic errors in digital image correlation caused by intensity interpolation. Opt Eng 39(11):2915–2921

    Article  Google Scholar 

  18. Wang YQ, Sutton MA, Reu PL (2009) Image matching error assessment in digital image correlation. In: Annual Conference & Exposition on Experimental & Applied Mechanics Albuquerque, NM

  19. Bornert M, Doumalin P, Dupré J-C, Poilâne C, Robert L, Toussaint E, Wattrisse B (2012) Short remarks about synthetic image generation in the context of the assessment of sub-pixel accuracy of Digital Image Correlation. In: 15th International Conference on Experimental Mechanics (ICEM’15), Porto, Portugal, 22-27 Juillet 2012, Porto, Portugal. EURASEM

  20. Roux S, Hild F (2006) Stress intensity factor measurements from digital image correlation: post-processing and integrated approaches. Int J Fract 140(1-4):141–157. doi:10.1007/s10704-006-6631-2

    Article  MATH  Google Scholar 

Download references

Acknowledgments

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract No. DE-AC04-94AL85000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. L. Reu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reu, P.L., Sweatt, W., Miller, T. et al. Camera System Resolution and its Influence on Digital Image Correlation. Exp Mech 55, 9–25 (2015). https://doi.org/10.1007/s11340-014-9886-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-014-9886-y

Keywords

Navigation