Skip to main content
Log in

Tailoring the Load Carrying Capacity of MWCNTs Through Inter-shell Atomic Bridging

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Recent studies have finally produced accurate measurements of the mechanical properties of carbon nanotubes, confirming the anticipated results computed from quantum and molecular mechanics. Several studies have also predicted an enhancement of these material properties as a result of electron irradiation. Here we prove conclusively through a rigorous TEM imaging study that this enhancement occurs as a result of multiple-shell load transfer through irradiation-induced crosslinks. Using a computational model of the system which mirrors the experimental setup, we show that intershell covalent crosslinks resulting from the irradiation are efficient atomic structures for inter-shell load transfer. A study of the correlation between number of defects and load transfer provides insight into the experimental results and quantifies the increase in load transfer with radiation dose. The combined experimental/computational approach therefore gives a complete understanding of the phenomenon and provides the means for tailoring the mechanical properties of 1-D nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. CNTs used for this experiment had to be long enough to span the gap between the MEMS device testing shuttles, and had to be free of kinks, curves, branches, and other anomalies.

References

  1. Peng B, Locascio M, Zapol P, Li S, Mielke SL, Schatz GC, Espinosa HD (2008) Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nat Nanotechnol 310:626–631. doi:10.1038/nnano.2008.211.

    Article  Google Scholar 

  2. Krishnan A, Dujardin E, Ebbesen TW, Yianilos PN, Treacy MMJ (1998) Young’s modulus of single-walled nanotubes. Phys Rev B Condens Matter Mater Phys 5820:14013–14019. doi:10.1103/PhysRevB.58.14013.

    Google Scholar 

  3. Haskins RW, Maier RS, Ebeling RM, Marsh CP, Majure DL, Bednar AJ, Welch CR, Barker BC (2007) Tight-binding molecular dynamics study of the role of defects on carbon nanotube moduli and failure. J Chem Phys 1277:074708. doi:10.1063/1.2756832.

    Article  Google Scholar 

  4. Charlier JC, Blase X, Roche S (2007) Electronic and transport properties of nanotubes. Rev Mod Phys 792:677–732. doi:10.1103/RevModPhys.79.677.

    Article  Google Scholar 

  5. Li XD, Gao HS, Scrivens WA, Fei DL, Xu XY, Sutton MA, Reynolds AP, Myrick ML (2004) Nanomechanical characterization of single-walled carbon nanotube reinforced epoxy composites. Nanotechnology 1511:1416–1423. doi:10.1088/0957-4484/15/11/005.

    Article  Google Scholar 

  6. Ke CH, Espinosa HD (2004) Feedback controlled nanocantilever device. Appl Phys Lett 854:681–683. doi:10.1063/1.1767606.

    Article  Google Scholar 

  7. Choi WB, Chung DS, Kang JH, Kim HY, Jin YW, Han IT, Lee YH, Jung JE, Lee NS, Park GS, Kim JM (1999) Fully sealed, high-brightness carbon-nanotube field-emission display. Appl Phys Lett 7520:3129–3131. doi:10.1063/1.125253.

    Article  Google Scholar 

  8. Sammalkorpi M, Krasheninnikov AV, Kuronen A, Nordlund K, Kaski K (2005) Irradiation-induced stiffening of carbon nanotube bundles. Nucl Instrum Methods Phys Res B Beam Interact Mater Atoms 228:142–145. doi:10.1016/j.nimb.2004.10.036.

    Google Scholar 

  9. Krasheninnikov AV, Banhart F (2007) Engineering of nanostructured carbon materials with electron or ion beams. Nat Mater 610:723–733. doi:10.1038/nmat1996.

    Article  Google Scholar 

  10. Kis A, Csanyi G, Salvetat JP, Lee TN, Couteau E, Kulik AJ, Benoit W, Brugger J, Forro L (2004) Reinforcement of single-walled carbon nanotube bundles by intertube bridging. Nat Mater 33:153–157. doi:10.1038/nmat1076.

    Article  Google Scholar 

  11. Espinosa HD, Zhu Y, Moldovan N (2007) Design and operation of a MEMS-based material testing system for nanomechanical characterization. J Microelectromech Syst 16:1219–1231.

    Article  Google Scholar 

  12. Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 3816584:678–680. doi:10.1038/381678a0.

    Article  Google Scholar 

  13. Salvetat JP, Bonard JM, Thomson NH, Kulik AJ, Forro L, Benoit W, Zuppiroli L (1999) Mechanical properties of carbon nanotubes. Appl Phys A Mater Sci Process 693:255–260. doi:10.1007/s003390050999.

    Article  Google Scholar 

  14. Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 2875453:637–640. doi:10.1126/science.287.5453.637.

    Article  Google Scholar 

  15. Zhu Y, Moldovan N, Espinosa HD (2005) A microelectromechanical load sensor for in situ electron and X-ray microscopy tensile testing of nanostructures. Appl Phys Lett 861:013506. doi:10.1063/1.1844594.

    Article  Google Scholar 

  16. Zhu Y, Espinosa HD (2005) An electromechanical material testing system for in situ electron microscopy and applications. Proc Natl Acad Sci U S A 10241:14503–14508. doi:10.1073/pnas.0506544102.

    Article  Google Scholar 

  17. Espinosa HD, Zhu Y, Moldovan N (2007) Design and operation of a MEMS-based material testing system for in-situ electron microscopy testing of nanostructures. J Microelectromech Syst 165:1219–1231. doi:10.1109/JMEMS.2007.905739.

    Article  Google Scholar 

  18. Pomoell JAV, Krasheninnikov AV, Nordlund K, Keinonen J (2004) Ion ranges and irradiation-induced defects in multiwalled carbon nanotubes. J Appl Phys 965:2864–2871. doi:10.1063/1.1776317.

    Article  Google Scholar 

  19. Tersoff J (1988) Empirical interatomic potential for carbon, with applications to amorphous carbon. Phys Rev Lett 6125:2879. doi:10.1103/PhysRevLett.61.2879.

    Article  Google Scholar 

  20. Tersoff J (1988) New empirical approach for the structure and energy of covalent systems. Phys Rev B Condens Matter Mater Phys 3712:6991–7000. doi:10.1103/PhysRevB.37.6991.

    Google Scholar 

  21. Khare R, Mielke SL, Paci JT, Zhang SL, Ballarini R, Schatz GC, Belytschko T (2007) Coupled quantum mechanical/molecular mechanical modeling of the fracture of defective carbon nanotubes and graphene sheets. Phys Rev B Condens Matter Mater Phys 757:075412. doi:10.1103/PhysRevB.75.075412.

    Google Scholar 

  22. Zhang S, Mielke SL, Khare R, Troya D, Ruoff RS, Schatz GC, Belytschko T (2005) Mechanics of defects in carbon nanotubes: atomistic and multiscale simulations. Phys Rev B Condens Matter Mater Phys 7111:115403. doi:10.1103/PhysRevB.71.115403.

    Google Scholar 

  23. Mielke SL, Belytschko T, Schatz GC (2007) Nanoscale fracture mechanics. Annu Rev Phys Chem 58:185–209. doi:10.1146/annurev.physchem.58.032806.104502.

    Article  Google Scholar 

  24. Zhu Y, Corigliano A, Espinosa HD (2006) A thermal actuator for nanoscale in-situ microscopy testing: design and characterization. J Micromechanics Microengineering 162:242–253. doi:10.1088/0960-1317/16/2/008.

    Article  Google Scholar 

  25. Belytschko T, Xiao SP, Schatz GC, Ruoff RS (2002) Atomistic simulations of nanotube fracture. Phys Rev B Condens Matter Mater Phys 6523:235430. doi:10.1103/PhysRevB.65.235430.

    Google Scholar 

  26. Barber AH, Andrews R, Schadler LS, Wagner HD (2005) On the tensile strength distribution of multiwalled carbon nanotubes. Appl Phys Lett 8720:203106. doi:10.1063/1.2130713.

    Article  Google Scholar 

  27. Mielke SL, Troya D, Zhang S, Li JL, Xiao SP, Car R, Ruoff RS, Schatz GC, Belytschko T (2004) The role of vacancy defects and holes in the fracture of carbon nanotubes. Chem Phys Lett 3904–6:413–420. doi:10.1016/j.cplett.2004.04.054.

    Article  Google Scholar 

  28. Smith BW, Luzzi DE (2001) Electron irradiation effects in single wall carbon nanotubes. J Appl Phys 907:3509–3515. doi:10.1063/1.1383020.

    Article  Google Scholar 

  29. Endo M, Takeuchi K, Hiraoka T, Furuta T, Kasai T, Sun X, Kiang CH, Dresselhaus MS (1997) Stacking nature of graphene layers in carbon nanotubes and nanofibres. J Phys Chem Solids 5811:1707–1712. doi:10.1016/S0022-3697(97)00055-3.

    Article  Google Scholar 

  30. Qin L-C (2006) Electron diffraction from carbon nanotubes. Rep Prog Phys 69:2761–2821. doi:10.1088/0034-4885/69/10/R02.

    Article  Google Scholar 

  31. Huhtala M, Krasheninnikov AV, Aittoniemi J, Stuart SJ, Nordlund K, Kaski K (2004) Improved mechanical load transfer between shells of multiwalled carbon nanotubes. Phys Rev B Condens Matter Mater Phys 704:045404. doi:10.1103/PhysRevB.70.045404.

    Google Scholar 

  32. Salonen E, Krasheninnikov AV, Nordlund K (2002) Ion-irradiation-induced defects in bundles of carbon nanotubes. Nucl Instrum Methods Phys Res B Beam Interact Mater Atoms 193:603–608. doi:10.1016/S0168-583X(02)00861-3.

    Article  Google Scholar 

  33. McKinley WA, Feshbach H (1948) The coulomb scattering of relativistic electrons by nuclei. Phys Rev 7412:1759–1763. doi:10.1103/PhysRev.74.1759.

    Article  Google Scholar 

  34. Doggett JA, Spencer LV (1956) Elastic scattering of electrons and positrons by point nuclei. Phys Rev 1036:1597–1601. doi:10.1103/PhysRev.103.1597.

    Article  Google Scholar 

  35. Bradley CR, Zaluzec NJ (1988) Atomic sputtering in the analytical electron microscope

  36. Zobelli A, Gloter A, Ewels CP, Seifert G, Colliex C (2007) Electron knock-on cross section of carbon and boron nitride nanotubes. Phys Rev B 75(24): p. Art. No. 245402

  37. Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim T, Suhai S, Seifert G (1998) Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys Rev B Condens Matter Mater Phys 5811:7260–7268. doi:10.1103/PhysRevB.58.7260.

    Google Scholar 

  38. Shenderova OA, Brenner DW, Omeltchenko A, Su X, Yang LH (2000) Atomistic modeling of the fracture of polycrystalline diamond. Phys Rev B Condens Matter Mater Phys 616:3877–3888. doi:10.1103/PhysRevB.61.3877.

    Google Scholar 

  39. Frauenheim T, Seifert G, Elstner M, Niehaus T, Kohler C, Amkreutz M, Sternberg M, Hajnal Z, Di Carlo A, Suhai S (2002) Atomistic simulations of complex materials: ground-state and excited-state properties. J Phys Condens Matter 1411:3015–3047. doi:10.1088/0953-8984/14/11/313.

    Article  Google Scholar 

  40. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 141:33–38. doi:10.1016/0263-7855(96)00018-5.

    Article  Google Scholar 

  41. Telling RH, Ewels CP, El Barbary AA, Heggie MI (2003) Wigner defects bridge the graphite gap. Nat Mater 25:333–337. doi:10.1038/nmat876.

    Article  Google Scholar 

  42. Charlier J-C, Michenaud JP (1993) Energetics of multilayered carbon tubules. Phys Rev Lett 7012:1858–1861. doi:10.1103/PhysRevLett.70.1858.

    Article  Google Scholar 

  43. Schabel MC, Martins JL (1992) Energetics of interplanar binding in graphite. Phys Rev B Condens Matter Mater Phys 4611:7185–7188. doi:10.1103/PhysRevB.46.7185.

    Google Scholar 

  44. Kolmogorov AN, Crespi VH (2000) Smoothest bearings: interlayer sliding in multiwalled carbon nanotubes. Phys Rev Lett 8522:4727–4730. doi:10.1103/PhysRevLett.85.4727.

    Article  Google Scholar 

  45. Dumitrica T, Hua M, Yakobson BI (2006) Symmetry-, time-, and temperature-dependent strength of carbon nanotubes. Proc Natl Acad Sci U S A 10316:6105–6109. doi:10.1073/pnas.0600945103.

    Article  Google Scholar 

  46. Dumitrica T, Belytschko T, Yakobson BI (2003) Bond-breaking bifurcation states in carbon nanotube fracture. J Chem Phys 11821:9485–9488. doi:10.1063/1.1577540.

    Article  Google Scholar 

Download references

Acknowledgements

HDE gratefully acknowledges the financial support for this work provided by the NSF through award CMMI 0555734, the US Army Research Office under grant W911NF-08-1-0061, and the ONR through awards N000140710905 and N000140810108. TB gratefully acknowledges the support of the US Army Research Office under grant W911NF-08-1-0212. The authors would also like to thank George Schatz and Steven Mielke for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. D. Espinosa.

Additional information

Locascio and Peng contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Locascio, M., Peng, B., Zapol, P. et al. Tailoring the Load Carrying Capacity of MWCNTs Through Inter-shell Atomic Bridging. Exp Mech 49, 169–182 (2009). https://doi.org/10.1007/s11340-008-9216-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-008-9216-3

Keywords

Navigation