Skip to main content
Log in

Detecting Changes in Correlation Networks with Application to Functional Connectivity of fMRI Data

  • Theory & Methods
  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

Research questions in the human sciences often seek to answer if and when a process changes across time. In functional MRI studies, for instance, researchers may seek to assess the onset of a shift in brain state. For daily diary studies, the researcher may seek to identify when a person’s psychological process shifts following treatment. The timing and presence of such a change may be meaningful in terms of understanding state changes. Currently, dynamic processes are typically quantified as static networks where edges indicate temporal relations among nodes, which may be variables reflecting emotions, behaviors, or brain activity. Here we describe three methods for detecting changes in such correlation networks from a data-driven perspective. Networks here are quantified using the lag-0 pair-wise correlation (or covariance) estimates as the representation of the dynamic relations among variables. We present three methods for change point detection: dynamic connectivity regression, max-type method, and a PCA-based method. The change point detection methods each include different ways to test if two given correlation network patterns from different segments in time are significantly different. These tests can also be used outside of the change point detection approaches to test any two given blocks of data. We compare the three methods for change point detection as well as the complementary significance testing approaches on simulated and empirical functional connectivity fMRI data examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Arizmendi, C., Gates, K., Fredrickson, B., & Wright, A. (2021). Specifying exogeneity and bilinear effects in data-driven model searches. Behavior Research Methods, 53(3), 1276–1288.

    Article  PubMed  PubMed Central  Google Scholar 

  • Baek, C., Gates, K. M., Leinwand, B., & Pipiras, V. (2021). Two sample tests for high-dimensional autocovariances. Computational Statistics and Data Analysis, 153, 107067.

    Article  Google Scholar 

  • Bai, J. (2000). Vector autoregressive models with structural changes in regression coefficients and in variance-covariance matrices. Annals of Economics and Finance, 1(2), 303–339.

    Google Scholar 

  • Bannister, P., Flitney, D., Woolrich, M., & Smith, S. (2000). Lowpass temporal filtering in fMRI time series. NeuroImage, 11(5), S658.

    Article  Google Scholar 

  • Bassett, D. S., Wymbs, N. F., Porter, M. A., Mucha, P. J., Carlson, J. M., & Grafton, S. T. (2011). Dynamic reconfiguration of human brain networks during learning. Proceedings of the National Academy of Sciences, 108(18), 7641.

    Article  Google Scholar 

  • Cai, T., Liu, W., & Xia, Y. (2013). Two-sample covariance matrix testing and support recovery in high-dimensional and sparse settings. Journal of the American Statistical Association, 108(501), 265–277.

    Article  Google Scholar 

  • Cohen, J. R., & D’Esposito, M. (2016). The segregation and integration of distinct brain networks and their relationship to cognition. Journal of Neuroscience, 36(48), 12083–12094.

    Article  PubMed  Google Scholar 

  • Cribben, I., Haraldsdottir, R., Atlas, L. Y., Wager, T. D., & Lindquist, M. A. (2012). Dynamic connectivity regression: Determining state-related changes in brain connectivity. Neuroimage, 61(4), 907–920.

    Article  PubMed  Google Scholar 

  • Denny, B. T., Fan, J., Liu, X., Guerreri, S., Mayson, S. J., Rimsky, L., New, A. S., Siever, L. J., & Koenigsberg, H. W. (2013). Insula-amygdala functional connectivity is correlated with habituation to repeated negative images. Social Cognitive and Affective Neuroscience, 9(11), 1660–1667.

    Article  PubMed  PubMed Central  Google Scholar 

  • Eichinger, B., & Kirch, C. (2018). A MOSUM procedure for the estimation of multiple random change points. Bernoulli, 24(1), 526–564.

    Article  Google Scholar 

  • Elton, A., & Gao, W. (2015). Task-related modulation of functional connectivity variability and its behavioral correlations. Human Brain Mapping, 36(8), 3260–3272.

    Article  PubMed  PubMed Central  Google Scholar 

  • Friston, K. J. (2011). Functional and effective connectivity: A review. Brain Connectivity, 1(1), 13–36.

    Article  PubMed  Google Scholar 

  • Gonzalez-Castillo, J., Hoy, C. W., Handwerker, D. A., Robinson, M. E., Buchanan, L. C., Saad, Z. S., & Bandettini, P. A. (2015). Tracking ongoing cognition in individuals using brief, whole-brain functional connectivity patterns. Proceedings of the National Academy of Sciences, 112(28), 8762–8767.

    Article  Google Scholar 

  • Hallquist, M. N., Hwang, K., & Luna, B. (2013). The nuisance of nuisance regression: Spectral misspecification in a common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity. Neuroimage, 82, 208–225.

    Article  PubMed  Google Scholar 

  • Han, X., & Inoue, A. (2015). Tests for parameter instability in dynamic factor models. Econometric Theory, 31(5), 1117–1152.

    Article  Google Scholar 

  • Huang, B., Zhang, K., Sanchez-Romero, R., Ramsey, J., Glymour, M. & Glymour, C. (2019). Diagnosis of autism spectrum disorder by causal influence strength learned from resting-state fMRI data. arXiv preprint arXiv:1902.10073 .

  • Hutchison, R. M., Womelsdorf, T., Allen, E. A., Bandettini, P. A., Calhoun, V. D., Corbetta, M., Della Penna, S., Duyn, J. H., Glover, G. H., Gonzalez-Castillo, J., et al. (2013). Dynamic functional connectivity: Promise, issues, and interpretations. Neuroimage, 80, 360–378.

    Article  PubMed  Google Scholar 

  • Jeong, S.-O., Pae, C., & Park, H.-J. (2016). Connectivity-based change point detection for large-size functional networks. NeuroImage, 143, 353–363.

    Article  PubMed  Google Scholar 

  • Kim, J., Jeong, W., & Chung, C. K. (2021). Dynamic functional connectivity change-point detection with random matrix theory inference. Frontiers in Neuroscience, 15, 445.

    Article  Google Scholar 

  • Kucyi, A., Tambini, A., Sadaghiani, S., Keilholz, S., & Cohen, J. R. (2018). Spontaneous cognitive processes and the behavioral validation of time-varying brain connectivity. Network Neuroscience, 2(4), 397–417.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lavielle, M., & Teyssiere, G. (2006). Detection of multiple change-points in multivariate time series. Lithuanian Mathematical Journal, 46(3), 287–306.

    Article  Google Scholar 

  • Lindquist, M. A., Xu, Y., Nebel, M. B., & Caffo, B. S. (2014). Evaluating dynamic bivariate correlations in resting-state fMRI: A comparison study and a new approach. NeuroImage, 101, 531–546.

    Article  PubMed  Google Scholar 

  • Mathôt, S., Schreij, D., & Theeuwes, J. (2012). OpenSesame: An open-source, graphical experiment builder for the social sciences. Behavior Research Methods, 44, 314–324.

  • Ombao, H., Lindquist, M., Aston, J., & Thompson, W. (2016). Handbook of neuroimaging data analysis. Boca Raton: Chapman and Hall/CRC.

    Book  Google Scholar 

  • Park, H.-J., Friston, K. J., Pae, C., Park, B., & Razi, A. (2018). Dynamic effective connectivity in resting state fMRI. Neuroimage, 180, 594–608.

    Article  PubMed  Google Scholar 

  • Pitarakis, J.-Y. (2004). Least squares estimation and tests of breaks in mean and variance under misspecification. The Econometrics Journal, 7, 32–54.

    Article  Google Scholar 

  • Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A., Vogel, A. C., Laumann, T. O., Miezin, F. M., Schlaggar, B. L., et al. (2011). Functional network organization of the human brain. Neuron, 72(4), 665–678.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanabe, J., Miller, D., Tregellas, J., Freedman, R., & Meyer, F. G. (2002). Comparison of detrending methods for optimal fMRI preprocessing. NeuroImage, 15(4), 902–907.

    Article  PubMed  Google Scholar 

  • Tottenham, N., Tanaka, J. W., Leon, A. C., McCarry, T., Nurse, M., Hare, T. A., Marcus, D. J., Westerlund, A., Casey, B. J., & Nelson, C. (2009). The NimStim set of facial expressions: Judgments from untrained research participants. Psychiatry Research, 168(3), 242–249.

  • Warnick, R., Guindani, M., Erhardt, E., Allen, E., Calhoun, V., & Vannucci, M. (2018). A Bayesian approach for estimating dynamic functional network connectivity in fMRI data. Journal of the American Statistical Association, 113(521), 134–151.

    Article  PubMed  PubMed Central  Google Scholar 

  • Waugh, C. E., & Schirillo, J. A. (2012). Timing: A missing key ingredient in typical fMRI studies of emotion. Behavioral and Brain Sciences, 35(3), 170–171.

    Article  PubMed  Google Scholar 

  • Xu, Y., & Lindquist, M. A. (2015). Dynamic connectivity detection: An algorithm for determining functional connectivity change points in fMRI data. Frontiers in Neuroscience, 9, 285.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yao, Y.-C. (1988). Estimating the number of change-points via Schwarz’ criterion. Statistics and Probability Letters, 6(3), 181–189.

  • Youssofzadeh, V., Akhtar, Z., Amiri, A. M. & Falk, T. H. (2017), An automated framework for emotional fMRI data analysis using covariance matrix. In 2017 IEEE global conference on signal and information processing (GlobalSIP) (pp. 760–763). IEEE.

  • Zhang, D., & Wu, W. B. (2017). Gaussian approximation for high dimensional time series. The Annals of Statistics, 45(5), 1895–1919.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changryong Baek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work of Baek was supported in part by the National Research Foundation of Korea (NRF-2019R1F1A1057104, NRF-2022R1F1A1066209). The work of Hopfinger and Gates and data acquisition was supported by the National Institutes of Health - National Institute of Biomedical Imaging and Bioengineering (R01 EB021299). Pipiras’s research was partially supported by the Grant DMS 1712966.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 428 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baek, C., Leinwand, B., Lindquist, K.A. et al. Detecting Changes in Correlation Networks with Application to Functional Connectivity of fMRI Data. Psychometrika 88, 636–655 (2023). https://doi.org/10.1007/s11336-023-09908-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-023-09908-7

Keywords

Navigation