Skip to main content

Advertisement

Log in

Joint Bayesian Estimation of Voxel Activation and Inter-regional Connectivity in fMRI Experiments

  • Theory and Methods
  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

Brain activation and connectivity analyses in task-based functional magnetic resonance imaging (fMRI) experiments with multiple subjects are currently at the forefront of data-driven neuroscience. In such experiments, interest often lies in understanding activation of brain voxels due to external stimuli and strong association or connectivity between the measurements on a set of pre-specified groups of brain voxels, also known as regions of interest (ROI). This article proposes a joint Bayesian additive mixed modeling framework that simultaneously assesses brain activation and connectivity patterns from multiple subjects. In particular, fMRI measurements from each individual obtained in the form of a multi-dimensional array/tensor at each time are regressed on functions of the stimuli. We impose a low-rank parallel factorization decomposition on the tensor regression coefficients corresponding to the stimuli to achieve parsimony. Multiway stick-breaking shrinkage priors are employed to infer activation patterns and associated uncertainties in each voxel. Further, the model introduces region-specific random effects which are jointly modeled with a Bayesian Gaussian graphical prior to account for the connectivity among pairs of ROIs. Empirical investigations under various simulation studies demonstrate the effectiveness of the method as a tool to simultaneously assess brain activation and connectivity. The method is then applied to a multi-subject fMRI dataset from a balloon-analog risk-taking experiment, showing the effectiveness of the model in providing interpretable joint inference on voxel-level activations and inter-regional connectivity associated with how the brain processes risk. The proposed method is also validated through simulation studies and comparisons to other methods used within the neuroscience community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Armagan, A., Dunson, D. B., & Lee, J. (2013). Generalized double Pareto shrinkage. Statistica Sinica, 23(1), 119.

    PubMed  PubMed Central  Google Scholar 

  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289–300.

    Google Scholar 

  • Bowman, F. D., Caffo, B., Bassett, S. S., & Kilts, C. (2008). A Bayesian hierarchical framework for spatial modeling of fMRI data. Neuroimage, 39(1), 146–156.

    Google Scholar 

  • Brown, P. J., Vannucci, M., & Fearn, T. (1998). Multivariate Bayesian variable selection and prediction. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 60(3), 627–641.

    Google Scholar 

  • Carvalho, C. M., Polson, N. G., & Scott, J. G. (2010). The horseshoe estimator for sparse signals. Biometrika, 97(2), 465–480.

    Google Scholar 

  • Collins, D. L., Holmes, C. J., Peters, T. M., & Evans, A. C. (1995). Automatic 3-D model-based neuroanatomical segmentation. Human Brain Mapping, 3(3), 190–208.

    Google Scholar 

  • Das, A., Sampson, A. L., Lainscsek, C., Muller, L., Lin, W., Doyle, J. C., et al. (2017). Interpretation of the precision matrix and its application in estimating sparse brain connectivity during sleep spindles from human electrocorticography recordings. Neural Computation, 29(3), 603–642.

    PubMed  PubMed Central  Google Scholar 

  • Eklund, A., Nichols, T. E., & Knutsson, H. (2016). Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proceedings of the National Academy of Sciences, 113(28), 7900–7905.

    Google Scholar 

  • Flandin, G., & Penny, W. D. (2007). Bayesian fMRI data analysis with sparse spatial basis function priors. Neuroimage, 34(3), 1108–1125.

    PubMed  Google Scholar 

  • Friston, K. J., Ashburner, J., Frith, C. D., Poline, J.-B., Heather, J. D., & Frackowiak, R. S. J. (1995). Spatial registration and normalization of images. Human Brain Mapping, 3(3), 165–189.

    Google Scholar 

  • Friston, K. J., Fletcher, P., Josephs, O., Holmes, A., Rugg, M. D., & Turner, R. (1998). Event-related fMRI: Characterizing differential responses. Neuroimage, 7(1), 30–40.

    PubMed  Google Scholar 

  • Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2014). Bayesian data analysis (Vol. 2). Boca Raton: CRC Press.

    Google Scholar 

  • George, E. I., & McCulloch, R. E. (1993). Variable selection via Gibbs sampling. Journal of the American Statistical Association, 88(423), 881–889.

    Google Scholar 

  • Guhaniyogi, R., & Spencer, D. (2018). Bayesian tensor response regression with an application to brain activation studies. Technical report, UCSC.

  • Guhaniyogi, R., Qamar, S., & Dunson, D. B. (2017). Bayesian tensor regression. Journal of Machine Learning Research, 18(79), 1–31.

    Google Scholar 

  • Hutchison, R. M., Womelsdorf, T., Allen, E. A., Bandettini, P. A., Calhoun, V. D., Corbetta, M., et al. (2013). Dynamic functional connectivity: Promise, issues, and interpretations. Neuroimage, 80, 360–378.

    PubMed  Google Scholar 

  • Ishwaran, H., Rao, J. S., et al. (2005). Spike and slab variable selection: Frequentist and Bayesian strategies. The Annals of Statistics, 33(2), 730–773.

    Google Scholar 

  • Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W., & Smith, S. M. (2012). Fsl. Neuroimage, 62(2), 782–790.

    PubMed  Google Scholar 

  • Kalus, S., Sämann, P. G., & Fahrmeir, L. (2014). Classification of brain activation via spatial Bayesian variable selection in fMRI regression. Advances in Data Analysis and Classification, 8(1), 63–83.

    Google Scholar 

  • Kiers, H. A. L. (2000). Towards a standardized notation and terminology in multiway analysis. Journal of Chemometrics: A Journal of the Chemometrics Society, 14(3), 105–122.

    Google Scholar 

  • Kolda, T. G., & Bader, B. W. (2009). Tensor decompositions and applications. SIAM Review, 51(3), 455–500.

    Google Scholar 

  • Kook, J. H., Guindani, M., Zhang, L., & Vannucci, M. (2019). NPBayes-fMRI: Non-parametric Bayesian general linear models for single- and multi-subject fMRI data. Statistics in Biosciences, 11(1), 3–21.

    Google Scholar 

  • Lazar, N. (2008). The statistical analysis of functional MRI data. New York: Springer.

    Google Scholar 

  • Lee, K.-J., Jones, G. L., Caffo, B. S., & Bassett, S. S. (2014). Spatial Bayesian variable selection models on functional magnetic resonance imaging time-series data. Bayesian Analysis (Online), 9(3), 699.

    PubMed Central  Google Scholar 

  • Li, H., & Pati, D. (2017). Variable selection using shrinkage priors. Computational Statistics & Data Analysis, 107, 107–119.

    Google Scholar 

  • Li, L., & Zhang, X. (2017). Parsimonious tensor response regression. Journal of the American Statistical Association, 112(519), 1131–1146.

    Google Scholar 

  • Mazziotta, J., Toga, A., Evans, A., Fox, P., Lancaster, J., Zilles, K., et al. (2001). A probabilistic atlas and reference system for the human brain: International consortium for brain mapping (ICBM). Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 356(1412), 1293–1322.

    PubMed  Google Scholar 

  • Miller, L., & Milner, B. (1985). Cognitive risk-taking after frontal or temporal lobectomy—ii. The synthesis of phonemic and semantic information. Neuropsychologia, 23(3), 371–379.

    PubMed  Google Scholar 

  • Ng, B., Abugharbieh, R., Varoquaux, G., Poline, J. B., & Thirion, B. (2011). Connectivity-informed fMRI activation detection. In International conference on medical image computing and computer-assisted intervention (pp. 285–292). Springer.

  • Olshausen, B. A., & Field, D. J. (2004). Sparse coding of sensory inputs. Current Opinion in Neurobiology, 14(4), 481–487.

    PubMed  Google Scholar 

  • Patel, R. S., Bowman, F. D. B., & Rilling, J. K. (2006a). A Bayesian approach to determining connectivity of the human brain. Human Brain Mapping, 27(3), 267–276.

    PubMed  Google Scholar 

  • Patel, R. S., Bowman, F. D. B., & Rilling, J. K. (2006b). Determining hierarchical functional networks from auditory stimuli fMRI. Human Brain Mapping, 27(5), 462–470.

    PubMed  PubMed Central  Google Scholar 

  • Penny, W. D., Friston, K. J., Ashburner, J. T., Kiebel, S. J., & Nichols, T. E. (2011). Statistical parametric mapping: The analysis of functional brain images. Boston: Elsevier.

    Google Scholar 

  • Sanyal, N., & Ferreira, M. A. R. (2012). Bayesian hierarchical multi-subject multiscale analysis of functional MRI data. Neuroimage, 63(3), 1519–1531.

    PubMed  Google Scholar 

  • Schonberg, T., Fox, C. R., Mumford, J. A., Congdon, E., Trepel, C., & Poldrack, R. A. (2012). Decreasing ventromedial prefrontal cortex activity during sequential risk-taking: An fMRI investigation of the balloon analog risk task. Frontiers in Neuroscience, 6, 80.

    PubMed  PubMed Central  Google Scholar 

  • Scott, J. G., & Berger, J. O. (2010). Bayes and empirical-Bayes multiplicity adjustment in the variable-selection problem. The Annals of Statistics, 38(5), 2587–2619.

    Google Scholar 

  • Smith, M., & Fahrmeir, L. (2007). Spatial Bayesian variable selection with application to functional magnetic resonance imaging. Journal of the American Statistical Association, 102(478), 417–431.

    Google Scholar 

  • Wang, H., et al. (2012). Bayesian graphical LASSO models and efficient posterior computation. Bayesian Analysis, 7(4), 867–886.

    Google Scholar 

  • Wang, X., Nan, B., Zhu, J., & Koeppe, R. (2014). Regularized 3D functional regression for brain image data via Haar wavelets. The Annals of Applied Statistics, 8(2), 1045.

    PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Kang, J., Kemmer, P. B., & Guo, Y. (2018). DensParcorr: Dens-based method for partial correlation estimation in large scale brain networks. Retrieved January 18, 2019 from https://CRAN.R-project.org/package=DensParcorr. R package version 1.1.

  • Warnick, R., Guindani, M., Erhardt, E., Allen, E., Calhoun, V., & Vannucci, M. (2018). A Bayesian approach for estimating dynamic functional network connectivity in fMRI data. Journal of the American Statistical Association, 113(521), 134–151.

    PubMed  PubMed Central  Google Scholar 

  • Welvaert, M., Durnez, J., Moerkerke, B., Verdoolaege, G., & Rosseel, Y. (2011). neuRosim: An R package for generating fMRI data. Journal of Statistical Software, 44(10), 1–18.

    Google Scholar 

  • Welvaert, M., & Rosseel, Y. (2013). On the definition of signal-to-noise ratio and contrast-to-noise ratio for fMRI data. PLoS one, 8(11), e77089.

    PubMed  PubMed Central  Google Scholar 

  • Xu, L., Johnson, T. D., Nichols, T. E., & Nee, D. E. (2009). Modeling inter-subject variability in fMRI activation location: A Bayesian hierarchical spatial model. Biometrics, 65(4), 1041–1051.

    PubMed  PubMed Central  Google Scholar 

  • Yu, C.-H., Prado, R., Ombao, H., & Rowe, D. (2018). A Bayesian variable selection approach yields improved detection of brain activation from complex-valued fMRI. Journal of the American Statistical Association, 113(524), 1395–1410.

    Google Scholar 

  • Zhang, J., Li, X., Li, C., Lian, Z., Huang, X., Zhong, G., et al. (2014a). Inferring functional interaction and transition patterns via dynamic Bayesian variable partition models. Human Brain Mapping, 35(7), 3314–3331.

    PubMed  Google Scholar 

  • Zhang, L., Guindani, M., & Vannucci, M. (2015). Bayesian models for functional magnetic resonance imaging data analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 7(1), 21–41.

    PubMed  Google Scholar 

  • Zhang, L., Guindani, M., Versace, F., Engelmann, J. M., & Vannucci, M. (2016). A spatiotemporal nonparametric Bayesian model of multi-subject fMRI data. The Annals of Applied Statistics, 10(2), 638–666.

    Google Scholar 

  • Zhang, L., Guindani, M., Versace, F., & Vannucci, M. (2014b). A spatio-temporal nonparametric Bayesian variable selection model of fMRI data for clustering correlated time courses. Neuroimage, 95, 162–175.

    PubMed  PubMed Central  Google Scholar 

  • Zhou, H., Li, L., & Zhu, H. (2013). Tensor regression with applications in neuroimaging data analysis. Journal of the American Statistical Association, 108(502), 540–552.

    PubMed  PubMed Central  Google Scholar 

  • Zhu, H., Fan, J., & Kong, L. (2014). Spatially varying coefficient model for neuroimaging data with jump discontinuities. Journal of the American Statistical Association, 109(507), 1084–1098.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Spencer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of Rajarshi Guhaniyogi is partially supported by grants from the Office of Naval Research (ONR-BAA N000141812741) and the National Science Foundation (DMS-1854662). Raquel Prado was partially supported by NSF grant SES-1853210.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spencer, D., Guhaniyogi, R. & Prado, R. Joint Bayesian Estimation of Voxel Activation and Inter-regional Connectivity in fMRI Experiments. Psychometrika 85, 845–869 (2020). https://doi.org/10.1007/s11336-020-09727-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-020-09727-0

Keywords

Navigation