Skip to main content
Log in

Hypothesis Testing of the Q-matrix

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

The recent surge of interests in cognitive assessment has led to the development of cognitive diagnosis models. Central to many such models is a specification of the Q-matrix, which relates items to latent attributes that have natural interpretations. In practice, the Q-matrix is usually constructed subjectively by the test designers. This could lead to misspecification, which could result in lack of fit of the underlying statistical model. To test possible misspecification of the Q-matrix, traditional goodness of fit tests, such as the Chi-square test and the likelihood ratio test, may not be applied straightforwardly due to the large number of possible response patterns. To address this problem, this paper proposes a new statistical method to test the goodness fit of the Q-matrix, by constructing test statistics that measure the consistency between a provisional Q-matrix and the observed data for a general family of cognitive diagnosis models. Limiting distributions of the test statistics are derived under the null hypothesis that can be used for obtaining the test p-values. Simulation studies as well as a real data example are presented to demonstrate the usefulness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bartholomew, D. J., & Tzamourani, P. (1999). The goodness of fit of latent trait models in attitude measurement. Sociological Methods & Research, 27(4), 525–546.

    Article  Google Scholar 

  • Cai, L., Maydeu-Olivares, A., Coffman, D. L., & Thissen, D. (2006). Limited-information goodness-of-fit testing of item response theory models for sparse \(2^p\) tables. British Journal of Mathematical and Statistical Psychology, 59(1), 173–194.

    Article  PubMed  Google Scholar 

  • Chen, Y., Liu, J., Xu, G., & Ying, Z. (2015). Statistical analysis of \(Q\)-matrix based diagnostic classification models. Journal of the American Statistical Association, 110, 850–866.

    Article  PubMed  Google Scholar 

  • Chiu, C.-Y. (2013). Statistical refinement of the \(Q\)-matrix in cognitive diagnosis. Applied Psychological Measurement, 37, 598–618.

    Article  Google Scholar 

  • Chiu, C., Douglas, J., & Li, X. (2009). Cluster analysis for cognitive diagnosis: Theory and applications. Psychometrika, 74(4), 633–665.

    Article  Google Scholar 

  • de la Torre, J. (2008). An empirically-based method of \(Q\)-matrix validation for the DINA model: Development and applications. Journal of Educational Measurement, 45, 343–362.

    Article  Google Scholar 

  • de la Torre, J. (2011). The generalized DINA model framework. Psychometrika, 76(2), 179–199.

    Article  Google Scholar 

  • de la Torre, J., & Chiu, C.-Y. (2016). A general method of empirical \(Q\)-matrix validation. Psychometrika, 81(2), 253–273.

    Article  PubMed  Google Scholar 

  • de la Torre, J., & Douglas, J. (2004). Higher order latent trait models for cognitive diagnosis. Psychometrika, 69, 333–353.

    Article  Google Scholar 

  • DeCarlo, L. T. (2011). On the analysis of fraction subtraction data: The DINA model, classification, latent class sizes, and the Q-matrix. Applied Psychological Measurement, 35, 8–26.

    Article  Google Scholar 

  • DeCarlo, L. T. (2012). Recognizing uncertainty in the \(Q\)-matrix via a bayesian extension of the DINA model. Applied Psychological Measurement, 36(6), 447–468.

    Article  Google Scholar 

  • Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via EM algorithm. Journal of the Royal Statistical Society Series B-Methodological, 39(1), 1–38.

    Google Scholar 

  • DiBello, L., Stout, W., & Roussos, L. (1995). Unified cognitive psychometric assessment likelihood-based classification techniques. In P. D. Nichols, S. F. Chipman, & R. L. Brennan (Eds.), Cognitively diagnostic assessment (pp. 361–390). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Gu, Y., & Xu, G. (2018). Partial identifiability of restricted latent class models. arXiv preprint arXiv:1803.04353.

  • Hartz, S. (2002). A Bayesian framework for the unified model for assessing cognitive abilities: Blending theory with practicality. Doctoral Dissertation, University of Illinois, Urbana-Champaign.

  • Henson, R., & Templin, J. (2005). Hierarchical log-linear modeling of the skill joint distribution. Technical report, External Diagnostic Research Group.

  • Henson, R. A., Templin, J. L., & Willse, J. T. (2009). Defining a family of cognitive diagnosis models using log-linear models with latent variables. Psychometrika, 74(2), 191–210.

    Article  Google Scholar 

  • Junker, B., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory. Applied Psychological Measurement, 25, 258–272.

    Article  Google Scholar 

  • Lehmann, E. L., & Romano, J. P. (2006). Testing statistical hypotheses. Berlin: Springer.

    Google Scholar 

  • Leighton, J. P., Gierl, M. J., & Hunka, S. M. (2004). The attribute hierarchy model for cognitive assessment: A variation on Tatsuoka’s rule-space approach. Journal of Educational Measurement, 41, 205–237.

    Article  Google Scholar 

  • Liu, J., Xu, G., & Ying, Z. (2012). Data-driven learning of \(Q\)-matrix. Applied Psychological Measurement, 36(7), 548–564.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, J., Xu, G., & Ying, Z. (2013). Theory of self-learning \(Q\)-matrix. Bernoulli, 19(5A), 1790–1817.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maydeu-Olivares, A. (2001). Limited information estimation and testing of thurstonian models for paired comparison data under multiple judgment sampling. Psychometrika, 66(2), 209–227.

    Article  Google Scholar 

  • Maydeu-Olivares, A., & Joe, H. (2005). Limited-and full-information estimation and goodness-of-fit testing in \(2^n\) contingency tables: A unified framework. Journal of the American Statistical Association, 100(471), 1009–1020.

    Article  Google Scholar 

  • Roussos, L. A., Templin, J. L., & Henson, R. A. (2007). Skills diagnosis using IRT-based latent class models. Journal of Educational Measurement, 44, 293–311.

    Article  Google Scholar 

  • Rupp, A. (2002). Feature selection for choosing and assembling measurement models: A building-block-based organization. Psychometrika, 2, 311–360.

    Google Scholar 

  • Rupp, A., & Templin, J. (2008a). Effects of \(q\)-matrix misspecification on parameter estimates and misclassification rates in the dina model. Educational and Psychological Measurement, 68, 78–98.

    Article  Google Scholar 

  • Rupp, A., & Templin, J. (2008b). Unique characteristics of diagnostic classification models: A comprehensive review of the current state-of-the-art. Measurement: Interdisciplinary Research and Perspective, 6, 219–262.

    Google Scholar 

  • Rupp, A., Templin, J., & Henson, R. A. (2010). Diagnostic measurement: Theory, methods, and applications. New York City: Guilford Press.

    Google Scholar 

  • Sen, B., Banerjee, M., Woodroofe, M., et al. (2010). Inconsistency of bootstrap: The Grenander estimator. The Annals of Statistics, 38(4), 1953–1977.

    Article  Google Scholar 

  • Sen, B., & Xu, G. (2015). Model based bootstrap methods for interval censored data. Computational Statistics & Data Analysis, 81, 121–129.

    Article  Google Scholar 

  • Stout, W. (2007). Skills diagnosis using IRT-based continuous latent trait models. Journal of Educational Measurement, 44, 313–324.

    Article  Google Scholar 

  • Tatsuoka, K. (1985). A probabilistic model for diagnosing misconceptions in the pattern classification approach. Journal of Educational Statistics, 12, 55–73.

    Article  Google Scholar 

  • Tatsuoka, K. (1990). Toward an integration of item-response theory and cognitive error diagnosis. In N. Frederiksen, R. Glaser, A. Lesgold, & M. Shafto (Eds.), Diagnostic monitoring of skill and knowledge acquisition, (pp. 453–488).

  • Tatsuoka, C. (2002). Data-analytic methods for latent partially ordered classification models. Applied Statistics (JRSS-C), 51, 337–350.

    Google Scholar 

  • Tatsuoka, C. (2005). Corrigendum: Data analytic methods for latent partially ordered classification models. Journal of the Royal Statistical Society: Series C (Applied Statistics), 54(2), 465–467.

    Article  Google Scholar 

  • Tatsuoka, K. (2009). Cognitive assessment: An introduction to the rule space method. Boca Raton: CRC Press.

    Google Scholar 

  • Templin, J. (2006). CDM: Cognitive diagnosis modeling with Mplus . Available from http://jtemplin.myweb.uga.edu/cdm/cdm.html.

  • Templin, J., He, X., Roussos, L., & Stout, W. (2003). The pseudo-item method: A simple technique for analysis of polytomous data with the fusion model. Technical report, External Diagnostic Research Group.

  • Templin, J., & Henson, R. (2006). Measurement of psychological disorders using cognitive diagnosis models. Psychological Methods, 11, 287–305.

    Article  PubMed  Google Scholar 

  • Tollenaar, N., & Mooijaart, A. (2003). Type I errors and power of the parametric bootstrap goodness-of-fit test: Full and limited information. British Journal of Mathematical and Statistical Psychology, 56(2), 271–288.

    Article  PubMed  Google Scholar 

  • Van der Vaart, A. W. (2000). Asymptotic statistics (Vol. 3). Cambridge: Cambridge university press.

    Google Scholar 

  • von Davier, M. (2005). A general diagnosis model applied to language testing data. Research report, Educational Testing Service.

  • von Davier, M. (2008). A general diagnostic model applied to language testing data. British Journal of Mathematical and Statistical Psychology, 61, 287–307.

    Article  Google Scholar 

  • Xu, G. (2017). Identifiability of restricted latent class models with binary responses. The Annals of Statistics, 45(2), 675–707.

    Article  Google Scholar 

  • Xu, G., & Shang, Z. (2018). Identifying latent structures in restricted latent class models. Journal of the American Statistical Association. https://doi.org/10.1080/01621459.2017.1340889.

  • Zhang, S. S., DeCarlo, L. T., & Ying, Z. (2013). Non-identifiability, equivalence classes, and attribute-specific classification in Q-matrix based cognitive diagnosis models. ArXiv e-prints.

Download references

Acknowledgements

The authors thank the Editor, the Associate Editor, and four reviewers for many helpful and constructive comments. This work is partially supported by National Science Foundation (Grant No. SES-1659328, DMS-1712717, IIS-1633360, MMS-1826540), Institute of Education Sciences (Grant No. R305D160010), and Army Grant (Grant No. W911NF-15-1-0159).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gongjun Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1202 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Y., Liu, J., Xu, G. et al. Hypothesis Testing of the Q-matrix. Psychometrika 83, 515–537 (2018). https://doi.org/10.1007/s11336-018-9629-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-018-9629-6

Keywords

Navigation