Skip to main content

Advertisement

Log in

Generalized Functional Extended Redundancy Analysis

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

Functional extended redundancy analysis (FERA) was recently developed to integrate data reduction into functional linear models. This technique extracts a component from each of multiple sets of predictor data in such a way that the component accounts for the maximum variance of response data. Moreover, it permits predictor and/or response data to be functional. FERA can be of use in describing overall characteristics of each set of predictor data and in summarizing the relationships between predictor and response data. In this paper, we extend FERA into the framework of generalized linear models (GLM), so that it can deal with response data generated from a variety of distributions. Specifically, the proposed method reduces each set of predictor functions to a component and uses the component for explaining exponential-family responses. As in GLM, we specify the random, systematic, and link function parts of the proposed method. We develop an iterative algorithm to maximize a penalized log-likelihood criterion that is derived in combination with a basis function expansion approach. We conduct two simulation studies to investigate the performance of the proposed method based on synthetic data. In addition, we apply the proposed method to two examples to demonstrate its empirical usefulness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.

Similar content being viewed by others

References

  • Dauxois, J., Pousse, A., & Romain, Y. (1982). Asymptotic theory for the principal component analysis of a vector random function: some applications to statistical inference. Journal of Multivariate Analysis, 12, 136–154.

    Article  Google Scholar 

  • Davidian, M., Lin, X., & Wang, J.-L. (2004). Introduction: emerging issues in longitudinal and functional data analysis. Statistica Sinica, 14, 613–614.

    Google Scholar 

  • Febrero-Bande, M., & Oviedo de la Fuente, M. (2012). Statistical computing in functional data analysis: the R package fda.usc. Journal of Statistical Software, 51, 1–28.

    Google Scholar 

  • Ferraty, F. (2011). Recent advances in functional data analysis and related topics. New York: Springer.

    Google Scholar 

  • Ferraty, F., Laksaci, A., Tadj, A., & Vieu, P. (2011). Kernel regression with functional response. Electronic Journal of Statistics, 5, 159–171.

    Article  Google Scholar 

  • Ferraty, F., Mas, A., & Vieu, P. (2007). Nonparametric regression on functional data: inference and practical. Australian & New Zealand Journal of Statistics, 49, 267–286.

    Article  Google Scholar 

  • Ferraty, F., & Romain, Y. (2011). The Oxford handbook of functional data analysis. Oxford: University Press.

    Google Scholar 

  • Ferraty, F., Van Keilegom, I., & Vieu, P. (2012). Regression when both response and predictor are functions. Journal of Multivariate Analysis, 109, 10–28.

    Article  Google Scholar 

  • Ferraty, F., & Vieu, P. (2006). Nonparametric functional data analysis: theory and practice. New York: Springer.

    Google Scholar 

  • González-Manteiga, W., & Vieu, P. (2007). Statistics for functional data. Computational Statistics & Data Analysis, 51, 4788–4792.

    Article  Google Scholar 

  • Green, P.J. (1984). Iteratively reweighted least squares for maximum likelihood estimation, and some robust and resistant alternative (with discussion). Journal of the Royal Statistical Society. Series B, 46, 149–192.

    Google Scholar 

  • Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: data mining, inference, and prediction (2nd ed.). New York: Springer.

    Book  Google Scholar 

  • Heyde, C.C. (1997). Quasi-likelihood and its applications. A general approach to optimal parameter estimation. New York: Springer.

    Google Scholar 

  • Hoerl, A.E., & Kennard, R.W. (1970). Ridge regression: application to nonorthogonal problems. Technometrics, 12, 69–82.

    Article  Google Scholar 

  • Hwang, H. (2009). Regularized generalized structured component analysis. Psychometrika, 74, 517–530.

    Article  Google Scholar 

  • Hwang, H., Suk, H.W., Lee, J.-H., Moskowitz, D.S., & Lim, J. (2012). Functional extended redundancy analysis. Psychometrika, 77, 524–542.

    Article  Google Scholar 

  • Hwang, H., & Tomiuk, M.A. (2010). Fuzzy clusterwise quasi-likelihood generalized linear models. Advances in Data Analysis and Classification, 4, 255–270.

    Article  Google Scholar 

  • Kreibig, S.D. (2010). Autonomic nervous system activity in emotion: a review. Biological Psychology, 84, 394–421.

    Article  PubMed  Google Scholar 

  • Le Cessie, S., & Van Houwelingen, J.C. (1992). Ridge estimators in logistic regression. Applied Statistics, 41, 191–201.

    Article  Google Scholar 

  • Lee, A., & Silvapulle, M. (1988). Ridge estimation in logistic regression. Communications in Statistics. Simulation and Computation, 17, 1231–1257.

    Article  Google Scholar 

  • Lian, H. (2011). Convergence of functional k-nearest neighbor regression estimate with functional responses. Electronic Journal of Statistics, 5, 31–40.

    Article  Google Scholar 

  • McCullagh, P. (1983). Quasi-likelihood functions. The Annals of Statistics, 11, 59–67.

    Article  Google Scholar 

  • McCullagh, P., & Nelder, J.A. (1989). Generalized linear models (2nd ed.). London: Chapman & Hall/CRC.

    Book  Google Scholar 

  • McLachlan, G., & Peel, D. (2000). Finite mixture models. New York: Wiley.

    Google Scholar 

  • Nelder, J.A., & Wedderburn, R.W.M. (1972). Generalized linear models. Journal of the Royal Statistical Society. Series A, 135, 370–384.

    Article  Google Scholar 

  • Ramsay, J.O., & Dalzell, C.J. (1991). Some tools for functional data analysis (with discussion). Journal of the Royal Statistical Society. Series B, 53, 539–572.

    Google Scholar 

  • Ramsay, J.O., Hooker, G., & Graves, S. (2009). Functional data analysis with R and Matlab. New York: Springer.

    Book  Google Scholar 

  • Ramsay, J.O., & Silverman, B.W. (1997). Functional data analysis (1st ed.). New York: Springer.

    Book  Google Scholar 

  • Ramsay, J.O., & Silverman, B.W. (2002). Applied functional data analysis: methods and case studies. New York: Springer.

    Google Scholar 

  • Ramsay, J.O., & Silverman, B.W. (2005). Functional data analysis (2nd ed.). New York: Springer.

    Google Scholar 

  • Rice, J.A. (2004). Functional and longitudinal data analysis: perspectives on smoothing. Statistica Sinica, 14, 631–647.

    Google Scholar 

  • Rice, J.A., & Silverman, B.W. (1991). Estimating the mean and covariance structure non-parametrically when the data are curves. Journal of the Royal Statistical Society. Series B, 53, 233–243.

    Google Scholar 

  • Richards, F.S.G. (1961). A method of maximum-likelihood estimation. Journal of the Royal Statistical Society. Series B, 23, 469–475.

    Google Scholar 

  • Takane, Y., & Hwang, H. (2005). An extended redundancy analysis and its applications to two practical examples. Computational Statistics & Data Analysis, 49, 785–808.

    Article  Google Scholar 

  • Valderrama, M.J. (2007). An overview to modelling functional data. Computational Statistics, 22, 331–334.

    Article  Google Scholar 

  • Wedderburn, R.W.M. (1974). Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika, 61, 439–447.

    Google Scholar 

  • Wedel, M., & DeSarbo, W.S. (1995). A mixture likelihood approach for generalized linear models. Journal of Classification, 12, 21–55.

    Article  Google Scholar 

  • Yee, T.W., & Hastie, T.J. (2003). Reduced-rank vector generalized linear models. Statistical Modelling, 3, 15–41.

    Article  Google Scholar 

  • Yee, T.W., & Wild, C.J. (1999). Vector generalized additive models. Journal of the Royal Statistical Society. Series B, 58, 481–493.

    Google Scholar 

Download references

Acknowledgements

The authors thank the Associate Editor and three anonymous reviewers for their constructive comments. The work reported in the paper was supported by the Natural Sciences and Engineering Research Council of Canada (No. 10630) to the third author, by the International Cooperation Program of the National Research Foundation of Korea (2012-K2A1A2033137) to the fourth author, and by the Social Science and Humanities Research Council of Canada and Fonds de Recherche sur la Société et la Culture to the fifth author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heungsun Hwang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, H., Suk, H.W., Takane, Y. et al. Generalized Functional Extended Redundancy Analysis. Psychometrika 80, 101–125 (2015). https://doi.org/10.1007/s11336-013-9373-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-013-9373-x

Key words

Navigation