Skip to main content
Log in

An Introduction to Normalization and Calibration Methods in Functional MRI

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

In functional magnetic resonance imaging (fMRI), the blood oxygenation level dependent (BOLD) signal is often interpreted as a measure of neural activity. However, because the BOLD signal reflects the complex interplay of neural, vascular, and metabolic processes, such an interpretation is not always valid. There is growing evidence that changes in the baseline neurovascular state can result in significant modulations of the BOLD signal that are independent of changes in neural activity. This paper introduces some of the normalization and calibration methods that have been proposed for making the BOLD signal a more accurate reflection of underlying brain activity for human fMRI studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  • Aguirre, G.K., Zarahn, E., & D’Esposito, M. (1998). The variability of human, BOLD hemodynamic responses. NeuroImage, 8, 360–369.

    Article  PubMed  Google Scholar 

  • Ances, B., Leontiev, O., Perthen, J.E., Liang, C., Lansing, A.E., & Buxton, R.B. (2008). Regional differences in the coupling of cerebral blood flow and oxygen metabolism changes in response to activation: implications for BOLD-fMRI. NeuroImage, 39(4), 1510–1521. doi:10.1016/j.neuroimage.2007.11.015.

    Article  PubMed  Google Scholar 

  • Ances, B., Vaida, F., Ellis, R., & Buxton, R. (2011). Test-retest stability of calibrated BOLD-fMRI in HIV− and HIV+ subjects. NeuroImage, 54(3), 2156–2162. doi:10.1016/j.neuroimage.2010.09.081.

    Article  PubMed  Google Scholar 

  • Ances, B.M., Liang, C.L., Leontiev, O., Perthen, J.E., Fleisher, A.S., Lansing, A.E., et al. (2008). Effects of aging on cerebral blood flow, oxygen metabolism, and blood oxygenation level dependent responses to visual stimulation. Human Brain Mapping. doi:10.1002/hbm.20574.

    Google Scholar 

  • Asghar, M.S., Hansen, A.E., Pedersen, S., Larsson, H.B.W., & Ashina, M. (2011). Pharmacological modulation of the BOLD response: a study of acetazolamide and glyceryl trinitrate in humans. Journal of Magnetic Resonance Imaging, 34(4), 921–927. doi:10.1002/jmri.22659.

    Article  PubMed  Google Scholar 

  • Bandettini, P.A., & Wong, E.C. (1997). A hypercapnia-based normalization method for improved spatial localization of human brain activation with fMRI. NMR in Biomedicine, 10(4–5), 197–203.

    Article  PubMed  Google Scholar 

  • Behzadi, Y., & Liu, T.T. (2005). An arteriolar compliance model of the cerebral blood flow response to neural stimulus. NeuroImage, 25(4), 1100–1111.

    Article  PubMed  Google Scholar 

  • Birn, R.M., Diamond, J.B., Smith, M.A., & Bandettini, P.A. (2006). Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI. NeuroImage, 31(4), 1536–1548.

    Article  PubMed  Google Scholar 

  • Birn, R.M., Saad, Z.S., & Bandettini, P.A. (2001). Spatial heterogeneity of the nonlinear dynamics in the FMRI BOLD response. NeuroImage, 14, 817–826.

    Article  PubMed  Google Scholar 

  • Biswal, B.B., Kannurpatti, S.S., & Rypma, B. (2007). Hemodynamic scaling of fMRI-BOLD signal: validation of low-frequency spectral amplitude as a scalability factor. Magnetic Resonance Imaging, 25(10), 1358–1369.

    Article  PubMed  Google Scholar 

  • Bolar, D.S., Sorensen, A.G., Rosen, B.R., & Adalsteinsson, E. (2009). Feasibility of QUantitative Imaging of eXtraction of Oxygen and TIssue Consumption (QUIXOTIC) to assess functional changes in venous oxygen saturation during visual stimulus. Paper presented at the 17th ISMRM scientific meeting, Honolulu.

  • Boxerman, J.L., Bandettini, P.A., Kwong, K.K., Baker, J.R., Davis, T.L., Rosen, B.R., et al. (1995). The intravascular contribution to fMRI signal change: Monte Carlo modeling and diffusion-weighted studies in vivo. Magnetic Resonance in Medicine, 34, 4–10.

    Article  PubMed  Google Scholar 

  • Boynton, G.M., Engel, S.A., Glover, G.H., & Heeger, D.J. (1996). Linear systems analysis of functional magnetic resonance imaging in human V1. The Journal of Neuroscience, 16, 4207–4221.

    PubMed  Google Scholar 

  • Brown, G.G., Zorrilla, L.T.E., Gerogy, B., Kindermann, S.S., Wong, E.C., & Buxton, R.B. (2003). BOLD and perfusion response to finger-thumb apposition after acetazolamide administration: differential relationship to global perfusion. Journal of Cerebral Blood Flow and Metabolism, 23, 829–837.

    PubMed  Google Scholar 

  • Bruhn, H., Kleinschmidt, A., Boecker, H., Merboldt, K.D., Hänicke, W., & Frahm, J. (1994). The effect of acetazolamide on regional cerebral blood oxygenation at rest and under stimulation as assessed by MRI. Journal of Cerebral Blood Flow and Metabolism, 14(5), 742–748. doi:10.1038/jcbfm.1994.95.

    Article  PubMed  Google Scholar 

  • Buxton, R.B., Uludag, K., Dubowitz, D.J., & Liu, T.T. (2004). Modeling the hemodynamic response to brain activation. NeuroImage, 23(Suppl 1), S220–S233.

    Article  PubMed  Google Scholar 

  • Carusone, L.M., Srinivasan, J., Gitelman, D.R., Mesulam, M.M., & Parrish, T.B. (2002). Hemodynamic response changes in cerebrovascular disease: implications for functional MR imaging. American Journal of Neuroradiology, 23(7), 1222–1228.

    PubMed  Google Scholar 

  • Chen, J.J., & Pike, G.B. (2009). BOLD-specific cerebral blood volume and blood flow changes during neuronal activation in humans. NMR in Biomedicine, 22(10), 1054–1062. doi:10.1002/nbm.1411.

    PubMed  Google Scholar 

  • Chen, J.J., & Pike, G.B. (2010a). Global cerebral oxidative metabolism during hypercapnia and hypocapnia in humans: implications for BOLD fMRI. Journal of Cerebral Blood Flow and Metabolism. doi:10.1038/jcbfm.2010.42.

    Google Scholar 

  • Chen, J.J., & Pike, G.B. (2010b). MRI measurement of the BOLD-specific flow-volume relationship during hypercapnia and hypocapnia in humans. NeuroImage, 53(2), 383–391. doi:10.1016/j.neuroimage.2010.07.003.

    Article  PubMed  Google Scholar 

  • Chen, Y., & Parrish, T.B. (2009). Caffeine’s effects on cerebrovascular reactivity and coupling between cerebral blood flow and oxygen metabolism. NeuroImage, 44(3), 647–652. doi:10.1016/j.neuroimage.2008.09.057.

    Article  PubMed  Google Scholar 

  • Chiarelli, P.A., Bulte, D.P., Gallichan, D., Piechnik, S.K., Wise, R., & Jezzard, P. (2007). Flow-metabolism coupling in human visual, motor, and supplementary motor areas assessed by magnetic resonance imaging. Magnetic Resonance in Medicine, 57(3), 538–547. doi:10.1002/mrm.21171.

    Article  PubMed  Google Scholar 

  • Cohen, E.R., Rostrup, E., Sidaros, K., Lund, T.E., Paulson, O.B., Ugurbil, K., et al. (2004). Hypercapnic normalization of BOLD fMRI: comparison across field strengths and pulse sequences. NeuroImage, 23(2), 613–624.

    Article  PubMed  Google Scholar 

  • Cohen, E.R., Ugurbil, K., & Kim, S.G. (2002). Effect of basal conditions on the magnitude and dynamics of the blood oxygenation level-dependent fMRI response. Journal of Cerebral Blood Flow and Metabolism, 22(9), 1042–1053.

    PubMed  Google Scholar 

  • D’Esposito, M., Deouell, L.Y., & Gazzaley, A. (2003). Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging. Nature Reviews. Neuroscience, 4(11), 863–872.

    Article  PubMed  Google Scholar 

  • Davis, T.L., Kwong, K.K., Weisskoff, R.M., & Rosen, B.R. (1998). Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proceedings of the National Academy of Sciences of the United States of America, 95, 1834–1839.

    Article  PubMed  Google Scholar 

  • de Zwart, J.A., van Gelderen, P., Jansma, J.M., Fukunaga, M., Bianciardi, M., & Duyn, J.H. (2009). Hemodynamic nonlinearities affect BOLD fMRI response timing and amplitude. NeuroImage, 47(4), 1649–1658. doi:10.1016/j.neuroimage.2009.06.001.

    Article  PubMed  Google Scholar 

  • Detre, J.A., Rao, H., Wang, D.J.J., Chen, Y.F., & Wang, Z. (2012). Applications of arterial spin labeled MRI in the brain. Journal of Magnetic Resonance Imaging. doi:10.1002/jmri.23581.

    PubMed  Google Scholar 

  • Detre, J.A., Wang, J., Wang, Z., & Rao, H. (2009). Arterial spin-labeled perfusion MRI in basic and clinical neuroscience. Current Opinion in Neurology, 22(4), 348–355. doi:10.1097/WCO.0b013e32832d9505.

    Article  PubMed  Google Scholar 

  • Devor, A., Dunn, A.K., Andermann, M.L., Ulbert, I., Boas, D.A., & Dale, A.M. (2003). Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex. Neuron, 39(2), 353–359.

    Article  PubMed  Google Scholar 

  • Formaggio, E., Storti, S., Avesani, M., Cerini, R., Milanese, F., Gasparini, A., et al. (2008). EEG and FMRI coregistration to investigate the cortical oscillatory activities during finger movement. Brain Topography, 21(2), 100–111. doi:10.1007/s10548-008-0058-1.

    Article  PubMed  Google Scholar 

  • Friston, K.J., Josephs, O., Rees, G., & Turner, R. (1998). Nonlinear event-related responses in fMRI. Magnetic Resonance in Medicine, 39, 41–52.

    Article  PubMed  Google Scholar 

  • Griffeth, V.E.M., & Buxton, R.B. (2011). A theoretical framework for estimating cerebral oxygen metabolism changes using the calibrated-BOLD method: modeling the effects of blood volume distribution, hematocrit, oxygen extraction fraction, and tissue signal properties on the BOLD signal. NeuroImage, 58(1), 198–212. doi:10.1016/j.neuroimage.2011.05.077.

    Article  PubMed  Google Scholar 

  • Handwerker, D.A., Gazzaley, A., Inglis, B.A., & D’Esposito, M. (2007). Reducing vascular variability of fMRI data across aging populations using a breathholding task. Human Brain Mapping, 28(9), 846–859. doi:10.1002/hbm.20307.

    Article  PubMed  Google Scholar 

  • Handwerker, D.A., Ollinger, J.M., & D’Esposito, M. (2004). Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses. NeuroImage, 21(4), 1639–1651.

    Article  PubMed  Google Scholar 

  • Hewson-Stoate, N., Jones, M., Martindale, J., Berwick, J., & Mayhew, J. (2005). Further nonlinearities in neurovascular coupling in rodent barrel cortex. NeuroImage, 24(2), 565–574. doi:10.1016/j.neuroimage.2004.08.040.

    Article  PubMed  Google Scholar 

  • Hoge, R.D., Atkinson, J., Gill, B., Crelier, G.R., Marrett, S., & Pike, G.B. (1999a). Investigation of BOLD signal dependence on cerebral blood flow and oxygen consumption: the deoxyhemoglobin dilution model. Magnetic Resonance in Medicine, 42(5), 849–863.

    Article  PubMed  Google Scholar 

  • Hoge, R.D., Atkinson, J., Gill, B., Crelier, G.R., Marrett, S., & Pike, G.B. (1999b). Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex. Proceedings of the National Academy of Sciences of the United States of America, 96(16), 9403–9408.

    Article  PubMed  Google Scholar 

  • Huttunen, J.K., Gröhn, O., & Penttonen, M. (2008). Coupling between simultaneously recorded BOLD response and neuronal activity in the rat somatosensory cortex. NeuroImage, 39(2), 775–785. doi:10.1016/j.neuroimage.2007.06.042.

    Article  PubMed  Google Scholar 

  • Hyder, F. (2004). Neuroimaging with calibrated FMRI. Stroke, 35(11 Suppl 1), 2635–2641.

    Article  PubMed  Google Scholar 

  • Hyder, F., Rothman, D.L., & Shulman, R.G. (2002). Total neuroenergetics support localized brain activity: implications for the interpretation of fMRI. Proceedings of the National Academy of Sciences of the United States of America, 99(16), 10771–10776. doi:10.1073/pnas.132272299.

    Article  PubMed  Google Scholar 

  • Iannetti, G., & Wise, R. (2007). BOLD functional MRI in disease and pharmacological studies: room for improvement? Magnetic Resonance Imaging, 25(6), 978–988. doi:10.1016/j.mri.2007.03.018.

    Article  PubMed  Google Scholar 

  • Jain, V., Langham, M.C., Floyd, T.F., Jain, G., Magland, J.F., & Wehrli, F.W. (2011). Rapid magnetic resonance measurement of global cerebral metabolic rate of oxygen consumption in humans during rest and hypercapnia. Journal of Cerebral Blood Flow and Metabolism. doi:10.1038/jcbfm.2011.34.

    Google Scholar 

  • Jones, M., Berwick, J., Hewson-Stoate, N., Gias, C., & Mayhew, J. (2005). The effect of hypercapnia on the neural and hemodynamic responses to somatosensory stimulation. NeuroImage, 27(3), 609–623. doi:10.1016/j.neuroimage.2005.04.036.

    Article  PubMed  Google Scholar 

  • Kannurpatti, S.S., & Biswal, B.B. (2008). Detection and scaling of task-induced fMRI-BOLD response using resting state fluctuations. NeuroImage, 40(4), 1567–1574. doi:10.1016/j.neuroimage.2007.09.040.

    Article  PubMed  Google Scholar 

  • Kida, I., Rothman, D.L., & Hyder, F. (2007). Dynamics of changes in blood flow, volume, and oxygenation: implications for dynamic functional magnetic resonance imaging calibration. Journal of Cerebral Blood Flow and Metabolism, 27(4), 690–696. doi:10.1038/sj.jcbfm.9600409.

    PubMed  Google Scholar 

  • Kim, T., Hendrich, K.S., Masamoto, K., & Kim, S.-G. (2007). Arterial versus total blood volume changes during neural activity-induced cerebral blood flow change: implication for BOLD fMRI. Journal of Cerebral Blood Flow and Metabolism, 27(6), 1235–1247. doi:10.1038/sj.jcbfm.9600429.

    Article  PubMed  Google Scholar 

  • Koch, S.P., Koendgen, S., Bourayou, R., Steinbrink, J., & Obrig, H. (2008). Individual alpha-frequency correlates with amplitude of visual evoked potential and hemodynamic response. NeuroImage, 41(2), 233–242. doi:10.1016/j.neuroimage.2008.02.018.

    Article  PubMed  Google Scholar 

  • Leuchter, A.F., Uijtdehaage, S.H., Cook, I.A., O’Hara, R., & Mandelkern, M. (1999). Relationship between brain electrical activity and cortical perfusion in normal subjects. Psychiatry Research, 90(2), 125–140.

    Article  PubMed  Google Scholar 

  • Li, T.Q., Haefelin, T.N., Chan, B., Kastrup, A., Jonsson, T., Glover, G.H., et al. (2000). Assessment of hemodynamic response during focal neural activity in human using bolus tracking, arterial spin labeling and BOLD techniques. NeuroImage, 12(4), 442–451. doi:10.1006/nimg.2000.0634.

    Article  PubMed  Google Scholar 

  • Liau, J., & Liu, T.T. (2009). Inter-subject variability in hypercapnic normalization of the BOLD fMRI response. NeuroImage, 45(2), 420–430. doi:10.1016/j.neuroimage.2008.11.032.

    Article  PubMed  Google Scholar 

  • Liu, T.T., & Brown, G.G. (2007). Measurement of cerebral perfusion with arterial spin labeling: Part 1. Methods. Journal of the International Neuropsychological Society, 13(3), 517–525. doi:10.1017/S1355617707070646.

    Article  PubMed  Google Scholar 

  • Liu, T.T., & Liau, J. (2010). Caffeine increases the linearity of the visual BOLD response. NeuroImage, 49(3), 2311–2317. doi:10.1016/j.neuroimage.2009.10.040.

    Article  PubMed  Google Scholar 

  • Liu, T.T., & Wong, E.C. (2005). A signal processing model for arterial spin labeling functional MRI. NeuroImage, 24(1), 207–215.

    Article  PubMed  Google Scholar 

  • Lu, H., & Ge, Y. (2008). Quantitative evaluation of oxygenation in venous vessels using T2-Relaxation-Under-Spin-Tagging MRI. Magnetic Resonance in Medicine, 60(2), 357–363. doi:10.1002/mrm.21627.

    Article  PubMed  Google Scholar 

  • Lu, H., Yezhuvath, U.S., & Xiao, G. (2010). Improving fMRI sensitivity by normalization of basal physiologic state. Human Brain Mapping, 31(1), 80–87. doi:10.1002/hbm.20846.

    PubMed  Google Scholar 

  • Lu, H., Zhao, C., Ge, Y., & Lewis-Amezcua, K. (2008). Baseline blood oxygenation modulates response amplitude: physiologic basis for intersubject variations in functional MRI signals. Magnetic Resonance in Medicine, 60(2), 364–372. doi:10.1002/mrm.21686.

    Article  PubMed  Google Scholar 

  • Maandag, N.J., Coman, D., Sanganahalli, B.G., Herman, P., Smith, A.J., Blumenfeld, H., et al. (2007). Energetics of neuronal signaling and fMRI activity. Proceedings of the National Academy of Sciences of the United States of America, 104(51), 20546–20551. doi:10.1073/pnas.0709515104.

    Article  PubMed  Google Scholar 

  • Meltzer, J., Negishi, M., Mayes, L.C., & Constable, R.T. (2007). Individual differences in EEG theta and alpha dynamics during working memory correlate with fMRI responses across subjects. Clinical Neurophysiology, 118(11), 2419–2436. doi:10.1016/j.clinph.2007.07.023.

    Article  PubMed  Google Scholar 

  • Nangini, C., Hlushchuk, Y., & Hari, R. (2009). Predicting stimulus-rate sensitivity of human somatosensory fMRI signals with MEG. Human Brain Mapping, 30(6), 1824–1832. doi:10.1002/hbm.20787.

    Article  PubMed  Google Scholar 

  • Oakes, T.R., Pizzagalli, D.A., Hendrick, A.M., Horras, K.A., Larson, C.L., Abercrombie, H.C., et al. (2004). Functional coupling of simultaneous electrical and metabolic activity in the human brain. Human Brain Mapping, 21(4), 257–270. doi:10.1002/hbm.20004.

    Article  PubMed  Google Scholar 

  • Ogawa, S., Menon, R.S., Tank, D.W., Kim, S.-G., Merkle, H., Ellerman, J.M., et al. (1993). Functional brain mapping by blood oxygenation level—dependent contrast magnetic resonance imaging: a comparison of signal characteristics with a biophysical model. Biophysical Journal, 64, 803–812.

    Article  PubMed  Google Scholar 

  • Ou, W., Golland, P., & Hämäläinen, M. (2007). Sources of variability in MEG. In Medical image computing and computer-assisted intervention: MICCAI International Conference on Medical Image Computing and Computer-Assisted Intervention, 10(Pt 2) (pp. 751–759).

    Google Scholar 

  • Perthen, J.E., Lansing, A.E., Liau, J., Liu, T.T., & Buxton, R.B. (2008). Caffeine-induced uncoupling of cerebral blood flow and oxygen metabolism: a calibrated BOLD fMRI study. NeuroImage, 40(1), 237–247.

    Article  PubMed  Google Scholar 

  • Pigeau, R.A., & Frame, A.M. (1992). Steady-state visual evoked responses in high and low alpha subjects. Electroencephalography and Clinical Neurophysiology, 84(2), 101–109.

    Article  PubMed  Google Scholar 

  • Polich, J. (1997). On the relationship between EEG and P300: individual differences, aging, and ultradian rhythms. International Journal of Psychophysiology, 26(1–3), 299–317.

    Article  PubMed  Google Scholar 

  • Restom, K., Bangen, K.J., Bondi, M.W., Perthen, J.E., & Liu, T.T. (2007). Cerebral blood flow and BOLD responses to a memory encoding task: a comparison between healthy young and elderly adults. NeuroImage, 37(2), 430–439.

    Article  PubMed  Google Scholar 

  • Restom, K., Behzadi, Y., & Liu, T.T. (2006). Physiological noise reduction for arterial spin labeling functional MRI. NeuroImage, 31(3), 1104–1115.

    Article  PubMed  Google Scholar 

  • Restom, K., Perthen, J.E., & Liu, T.T. (2008). Calibrated fMRI in the medial temporal lobe during a memory-encoding task. NeuroImage, 40(4), 1495–1502.

    Article  PubMed  Google Scholar 

  • Sheth, S.A., Nemoto, M., Guiou, M., Walker, M., Pouratian, N., & Toga, A.W. (2004). Linear and nonlinear relationships between neuronal activity, oxygen metabolism, and hemodynamic responses. Neuron, 42(2), 347–355.

    Article  PubMed  Google Scholar 

  • Sicard, K., & Duong, T. (2005). Effects of hypoxia, hyperoxia, and hypercapnia on baseline and stimulus-evoked BOLD, CBF, and CMRO in spontaneously breathing animals. NeuroImage, 25(3), 850–858. doi:10.1016/j.neuroimage.2004.12.010.

    Article  PubMed  Google Scholar 

  • Smith, A.J., Blumenfeld, H., Behar, K.L., Rothman, D.L., Shulman, R.G., & Hyder, F. (2002). Cerebral energetics and spiking frequency: the neurophysiological basis of fMRI. Proceedings of the National Academy of Sciences of the United States of America, 99(16), 10765–10770. doi:10.1073/pnas.132272199.

    Article  PubMed  Google Scholar 

  • St Lawrence, K.S., Ye, F.Q., Lewis, B.K., Frank, J.A., & McLaughlin, A.C. (2003). Measuring the effects of indomethacin on changes in cerebral oxidative metabolism and cerebral blood flow during sensorimotor activation. Magnetic Resonance in Medicine, 50(1), 99–106.

    Article  Google Scholar 

  • Stefanovic, B., Warnking, J.M., Kobayashi, E., Bagshaw, A.P., Hawco, C., Dubeau, F., et al. (2005). Hemodynamic and metabolic responses to activation, deactivation and epileptic discharges. NeuroImage, 28(1), 205–215.

    Article  PubMed  Google Scholar 

  • Thomason, M.E., Foland, L.C., & Glover, G.H. (2007). Calibration of BOLD fMRI using breath holding reduces group variance during a cognitive task. Human Brain Mapping, 28(1), 59–68.

    Article  PubMed  Google Scholar 

  • Thomason, M.E., & Glover, G.H. (2008). Controlled inspiration depth reduces variance in breath-holding-induced BOLD signal. NeuroImage, 39(1), 206–214. doi:10.1016/j.neuroimage.2007.08.014.

    Article  PubMed  Google Scholar 

  • Tobimatsu, S., Tomoda, H., & Kato, M. (1996). Normal variability of the amplitude and phase of steady-state VEPs. Electroencephalography and Clinical Neurophysiology, 100(3), 171–176.

    Article  PubMed  Google Scholar 

  • Vasquez, A.L., & Noll, D.C. (1998). Nonlinear aspects of the BOLD response in functional MRI. NeuroImage, 7, 108–118.

    Article  Google Scholar 

  • Wager, T.D., Vazquez, A., Hernandez, L., & Noll, D.C. (2005). Accounting for nonlinear BOLD effects in fMRI: parameter estimates and a model for prediction in rapid event-related studies. NeuroImage, 25(1), 206–218.

    Article  PubMed  Google Scholar 

  • Wise, R.G., Ide, K., Poulin, M.J., & Tracey, I. (2004). Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal. NeuroImage, 21(4), 1652–1664.

    Article  PubMed  Google Scholar 

  • Xu, F., Uh, J., Brier, M.R., Hart, J., Yezhuvath, U.S., Gu, H., et al. (2011). The influence of carbon dioxide on brain activity and metabolism in conscious humans. Journal of Cerebral Blood Flow and Metabolism, 31(1), 58–67. doi:10.1038/jcbfm.2010.153.

    Article  PubMed  Google Scholar 

  • Zappe, A.C., Uludağ, K., Oeltermann, A., Uğurbil, K., & Logothetis, N.K. (2008). The influence of moderate hypercapnia on neural activity in the anesthetized nonhuman primate. Cerebral Cortex, 18(11), 2666–2673. doi:10.1093/cercor/bhn023.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge funding support by the NIH National Center for Research Resources for the FBIRN consortium (Grant U24-RR021992) as well as individual grants to coinvestigators: P41-RR009784 (GHG), R01NS051661, and R01MH084796 (TTL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas T. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, T.T., Glover, G.H., Mueller, B.A. et al. An Introduction to Normalization and Calibration Methods in Functional MRI. Psychometrika 78, 308–321 (2013). https://doi.org/10.1007/s11336-012-9309-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-012-9309-x

Key words

Navigation