Skip to main content
Log in

Estimation of the Nonlinear Random Coefficient Model when Some Random Effects Are Separable

  • Theory and Methods
  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

A method is presented for marginal maximum likelihood estimation of the nonlinear random coefficient model when the response function has some linear parameters. This is done by writing the marginal distribution of the repeated measures as a conditional distribution of the response given the nonlinear random effects. The resulting distribution then requires an integral equation that is of dimension equal to the number of nonlinear terms. For nonlinear functions that have linear coefficients, the improvement in computational speed and accuracy using the new algorithm can be dramatic. An illustration of the method with repeated measures data from a learning experiment is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bates, D.M., & Watts, D.G. (1988). Nonlinear regression analysis and its applications. New York: Wiley.

    Book  Google Scholar 

  • Davidian, M., & Giltinan, D.M. (1995). Nonlinear models for repeated measurement data. London: Chapman & Hall.

    Google Scholar 

  • Demidenko, E. (1997). Asymptotic properties of nonlinear mixed-effects models. In T.G. Gregoire, D.R. Brillinger, P.J. Diggle, E. Russek-Cohen, W.G. Warrne, & R.D. Wolfinger (Eds.), Modelling longitudinal and spatially correlated data: Methods, applications and future directions (pp. 49–62). New York: Springer.

    Google Scholar 

  • du Toit, S.H.C. (1993). Analysis of multilevel models. Part 1: Theoretical aspects. Pretoria: Human Sciences Research Council.

    Google Scholar 

  • Dyba, T., Hakulinen, T., & Päivärinta, L. (1997). A simple non-linear model in incidence prediction. Statistics in Medicine, 16, 2297–2309.

    Article  PubMed  Google Scholar 

  • Evans, M., & Swartz, T. (1995). Methods for approximating integrals in statistics with special emphasis on Bayesian integration problems. Statistical Science, 10, 254–272.

    Article  Google Scholar 

  • Fitzmaurice, G., Laird, N., & Ware, J. (2004). Applied longitudinal analysis. New York: Wiley.

    Google Scholar 

  • Frensch, P.A., Lindenberger, U., & Kray, J. (1999). Imposing structure on an unstructured environment: Ontogenetic changes in the ability to form rules of behavior under conditions of low environmental predictability. In A.D. Friederici, & R. Menzel (Eds.), Learning: Rule extraction and representation (pp. 139–162). Berlin: de Gruyter.

    Google Scholar 

  • Hand, D.J., & Crowder, M.J. (1996). Practical longitudinal data analysis. London: Chapman & Hall.

    Google Scholar 

  • Krommer, A.R., & Ueberhuber, C.W. (1994). Numerical integration on advanced computer systems. New York: Springer.

    Book  Google Scholar 

  • Lawton, W.H., & Sylvestre, E.A. (1971). Elimination of linear parameters in nonlinear regression. Technometrics, 13, 461–467.

    Article  Google Scholar 

  • Lindstrom, M.J., & Bates, D.M. (1990). Nonlinear mixed effects models for repeated measures data. Biometrics, 46, 673–687.

    Article  PubMed  Google Scholar 

  • MacCallum, R.C., Kim, C., Malarkey, W., & Kielcolt-Glaser, J. (1997). Studying multivariate change using multilevel models and latent curve models. Multivariate Behavioral Research, 32, 215–253.

    Article  Google Scholar 

  • Meredith, W., & Tisak, J. (1990). Latent curve analysis. Psychometrika, 55, 107–122.

    Article  Google Scholar 

  • Pinheiro, J.C., & Bates, D.M. (1995). Approximations to the loglikelihood function in the nonlinear mixed effects model. Journal of Computational and Graphical Statistics, 4, 12–35.

    Article  Google Scholar 

  • Richards, F.S.G. (1961). A method of maximum-likelihood estimation. Journal of the Royal Statistical Society (B), 23, 469–476.

    Google Scholar 

  • Roe, D.J. (1997). Comparison of population pharmacokinetic modeling methods using simulated data: Results from the population modeling workgroup (with discussion). Statistics in Medicine, 16, 1241–1262.

    Article  PubMed  Google Scholar 

  • Ross, G.J.S. (1970). The efficient use of function minimization in non-linear maximum-likelihood estimation. Applied Statistics, 19, 205–221.

    Article  Google Scholar 

  • Ross, G.J.S. (1990). Nonlinear estimation. New York: Springer.

    Google Scholar 

  • Rubin, D.C., Hinton, S., & Wenzel, A. (1999). The precise time course of retention. Journal of Experimental Psychology: Learning, Memory and Cognition, 25, 1161–1176.

    Article  Google Scholar 

  • Rubin, D.C., & Wenzel, A. (1996). One hundred years of forgetting: A quantitative description of retention. Psychological Review, 103, 734–760.

    Article  Google Scholar 

  • Sargisson, R.J., & White, K.G. (2001). Generalization of delayed matching to sample following training at different delays. Journal of the Experimental Analysis of Behavior, 75, 1–14.

    Article  PubMed  Google Scholar 

  • Stroud, A.H., & Secrest, D. (1966). Gaussian quadrature formulas. New York: Prentice-Hall.

    Google Scholar 

  • Vonesh, E.F. (1992). Non-linear models for the analysis of longitudinal data. Statistics in Medicine, 11, 1929–1954.

    Article  PubMed  Google Scholar 

  • Vonesh, E.F., & Chinchilli, V.M. (1997). Linear and nonlinear models for the analysis of repeated measurements. New York: Dekker.

    Google Scholar 

  • Vonesh, E.F., Wang, H., Nie, L., & Majumdar, D. (2002). Conditional second-order generalized estimating equations for generalized linear and nonlinear mixed-effects models. Journal of the American Statistical Association, 97, 271–283.

    Article  Google Scholar 

  • Walker, S. (1996). An EM algorithm for nonlinear random effects models. Biometrics, 52, 934–944.

    Article  Google Scholar 

  • Willet, J.B., & Sayer, A.G. (1994). Using covariance structure analysis to detect correlates and predictors of individual change over time. Psychological Bulletin, 116, 363–381.

    Article  Google Scholar 

  • Zeger, S.L., Liang, K.-Y., & Albert, P.S. (1988). Models for longitudinal data: A generalized estimating equation approach. Biometrics, 44, 1049–1060.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Cudeck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

du Toit, S.H.C., Cudeck, R. Estimation of the Nonlinear Random Coefficient Model when Some Random Effects Are Separable. Psychometrika 74, 65–82 (2009). https://doi.org/10.1007/s11336-008-9107-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-008-9107-7

Keywords

Navigation