Skip to main content

Advertisement

Log in

The effects of aerobic exercise on blood plasma microRNA level in healthy adults: a systematic review and meta-analysis

  • Review
  • Published:
Sport Sciences for Health Aims and scope Submit manuscript

Abstract

Background

Exercise training was found to trigger various phenotypic changes related to preventing numerous diseases. Additionally, it also influences the microRNA (miRNA) levels in the circulation. These miRNAs are non-coding RNA that regulate gene expressions by suppressing or degrading their target genes. However, it is still not clear whether miRNA changes due to exercise play a role in the mechanism of exercise in preventing disease.

Aim

To systematically collect and analyze the effects of aerobic exercises on plasma miRNA levels and discuss possible aerobic exercise mechanisms in preventing and controlling various chronic diseases through miRNA modification.

Methods

We conducted a systematic review of articles from the Cochrane, PubMed, SAGE, and EBSCO databases with keywords related to “exercise”, “training”, and “miRNA”. Meta-analysis was conducted where possible.

Results

Twelve studies were included. Acute aerobic exercise increases miR-1, miR-133a, miR-206, miR-499, miR-126, and miR-146, with most significantly decreasing within 24 h. The changes in miRNAs were influenced by the exercise intensity (miR-1), exercise duration (miR-1, miR-133a, 146a), and subject’s fitness level (miR-1, miR-133a, miR-206, miR-21).

Conclusion

Besides playing a role in the process of physiological adaptation, the role of exercise in preventing and controlling various chronic diseases may occur through the pulsatile increase of various microRNAs, which have roles as tumor suppressor genes (miR-1, miR-133a, miR-206), anti-inflammatory agents (miR-126, miR-146a) and angiogenesis regulators (miR-126).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

Available at the attachment.

Code availability

Not applicable.

Abbreviations

CAD:

Coronary arterial disease

CK:

Creatine kinase

c-Met:

Mesenchymal-epithelial transition factor

GLUT4:

Glucose transporter type 4

HIF-1α:

Hypoxia-inducible factor 1-alpha

LASP1:

LIM and SH3 Protein 1

LDL:

Low-density lipoprotein

MEF2:

Myocyte-enhancing factor 2

miR:

MicroRNA

miRNA:

MicroRNA

NF-κB:

Nuclear factor-κB

Pax7:

Paired box transcription factor seven

PDCD4:

Programmed cell death protein 4

PRISMA:

Preferred Reporting Items for Systematic Reviews and Meta-analyses

PTEN:

Phosphatase and tensin

RCOT:

Randomized crossover trial

TAGLN2:

Transgelin 2

SD:

Standard deviation

SMD:

Standardized mean difference

VEGF:

Vascular endothelial growth factor

O2max :

Maximum oxygen consumption

References

  1. Pinckard K, Baskin KK, Stanford KI (2019) Effects of exercise to improve cardiovascular health. Front Cardiovasc Med 6:69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pollán M, Casla-Barrio S, Alfaro J et al (2020) Exercise and cancer: a position statement from the Spanish Society of Medical Oncology. Clin Transl Oncol 22:1710–1729

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yang D, Yang Y, Li Y, Han R (2019) Physical exercise as therapy for type 2 diabetes mellitus: from mechanism to orientation. Ann Nutr Metab 74:313–321

    Article  CAS  PubMed  Google Scholar 

  4. Domańska-Senderowska D, Laguette MJN, Jegier A, Cieszczyk P, September AV, Brzeziańska-Lasota E (2019) MicroRNA profile and adaptive response to exercise training: a review. Int J Sports Med 40:227–235

    Article  PubMed  Google Scholar 

  5. Chen X, Liang H, Zhang J, Zen K, Zhang C-Y (2012) Secreted microRNAs: a new form of intercellular communication. Trends Cell Biol 22:125–132

    Article  CAS  PubMed  Google Scholar 

  6. Mompeón A, Ortega-Paz L, Vidal-Gómez X et al (2020) Disparate miRNA expression in serum and plasma of patients with acute myocardial infarction: a systematic and paired comparative analysis. Sci Rep 10:5373

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dufourd T, Robil N, Mallet D et al (2019) Plasma or serum? A qualitative study on rodents and humans using high-throughput microRNA sequencing for circulating biomarkers. Biol Methods Protoc. 2019:4

    Google Scholar 

  8. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339:b2535

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wan X, Wang W, Liu J, Tong T (2014) Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol 14:135

    Article  PubMed  PubMed Central  Google Scholar 

  10. Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ WV (eds) (2021) Cochrane handbook for systematic reviews of interventions version 6.2. www.training.cochrane.org/handbook. Accessed Feb 2021

  11. NIH (2014) Blood Institute national heart and lung: quality assessment tool for before-after (Pre-Post) Studies with No Control Group

  12. Tufanaru C, Munn Z, Aromataris E, Campbell J, Hopp L (2020) Chapter 3: systematic reviews of effectiveness. In: Aromataris E, Munn Z (eds) JBI manual for evidence synthesis

  13. Danese E, Benati M, Sanchis-Gomar F et al (2018) Influence of middle-distance running on muscular micro RNAs. Scand J Clin Lab Invest 78:165–170. https://doi.org/10.1080/00365513.2018.1426104

    Article  CAS  PubMed  Google Scholar 

  14. Mooren FC, Viereck J, Krüger K, Thum T (2014) Circulating microRNAs as potential biomarkers of aerobic exercise capacity. Am J Physiol Hear Circ Physiol 306:1–14. https://doi.org/10.1152/ajpheart.00711.2013

    Article  CAS  Google Scholar 

  15. Baggish AL, Hale A, Weiner RB et al (2011) Dynamic regulation of circulating microRNA during acute exhaustive exercise and sustained aerobic exercise training. J Physiol 589:3983–3994. https://doi.org/10.1113/jphysiol.2011.213363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Baggish AL, Park J, Min PK et al (2014) Rapid upregulation and clearance of distinct circulating microRNAs after prolonged aerobic exercise. J Appl Physiol 116:522–531. https://doi.org/10.1152/japplphysiol.01141.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Min PK, Park J, Isaacs S et al (2016) Influence of statins on distinct circulating microRNAs during prolonged aerobic exercise. J Appl Physiol 120:711–720. https://doi.org/10.1152/japplphysiol.00654.2015

    Article  CAS  PubMed  Google Scholar 

  18. Banzet S, Chennaoui M, Girard O et al (2013) Changes in circulating microRNAs levels with exercise modality. J Appl Physiol 115:1237–1244. https://doi.org/10.1152/japplphysiol.00075.2013

    Article  CAS  PubMed  Google Scholar 

  19. Nielsen S, Åkerström T, Rinnov A et al (2014) The miRNA plasma signature in response to acute aerobic exercise and endurance training. PLoS ONE 9:e87308–e87308. https://doi.org/10.1371/journal.pone.0087308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Clauss S, Wakili R, Hildebrand B et al (2016) MicroRNAs as biomarkers for acute atrial remodeling in marathon runners (The miRathon Study—a sub-study of the Munich Marathon Study). PLoS ONE 11:e0148599–e0148599. https://doi.org/10.1371/journal.pone.0148599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Uhlemann M, Möbius-Winkler S, Fikenzer S et al (2014) Circulating microRNA-126 increases after different forms of endurance exercise in healthy adults. Eur J Prev Cardiol 21:484–491. https://doi.org/10.1177/2047487312467902

    Article  PubMed  Google Scholar 

  22. Ramos AE, Lo C, Estephan LE et al (2018) Specific circulating microRNAs display dose-dependent responses to variable intensity and duration of endurance exercise. Am J Physiol Hear Circ Physiol 315:H273–H283. https://doi.org/10.1152/ajpheart.00741.2017

    Article  CAS  Google Scholar 

  23. Cui SF, Wang C, Yin X et al (2016) Similar responses of circulating microRNAs to acute high-intensity interval exercise and vigorous-intensity continuous exercise. Front Physiol 7:1–8. https://doi.org/10.3389/fphys.2016.00102

    Article  Google Scholar 

  24. Gomes CPC, Oliveira-Jr GP, Madrid B, Almeida JA, Franco OL, Pereira RW (2014) Circulating miR-1, miR-133a, and miR-206 levels are increased after a half-marathon run. Biomarkers 19:585–589

    Article  CAS  PubMed  Google Scholar 

  25. Widmann M, Nieß AM, Munz B (2019) Physical exercise and epigenetic modifications in skeletal muscle. Sport Med 49:509–523

    Article  Google Scholar 

  26. Cui J-Y, Liang H-W, Pan X-L et al (2017) Characterization of a novel panel of plasma microRNAs that discriminates between Mycobacterium tuberculosis infection and healthy individuals. PLoS ONE 12:e0184113–e0184113

    Article  PubMed  PubMed Central  Google Scholar 

  27. Nielsen S, Scheele C, Yfanti C et al (2010) Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle. J Physiol 588:4029–4037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen J-F, Mandel EM, Thomson JM et al (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38:228–233. https://doi.org/10.1038/ng1725

    Article  CAS  PubMed  Google Scholar 

  29. Liu N, Williams AH, Kim Y et al (2007) An intragenic MEF2-dependent enhancer directs muscle-specific expression of microRNAs 1 and 133. Proc Natl Acad Sci USA 104:20844–20849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ultimo S, Zauli G, Martelli AM et al (2018) Influence of physical exercise on microRNAs in skeletal muscle regeneration, aging and diseases. Oncotarget 9:17220–17237

    Article  PubMed  PubMed Central  Google Scholar 

  31. Nie Y, Sato Y, Wang C, Yue F, Kuang S, Gavin TP (2016) Impaired exercise tolerance, mitochondrial biogenesis, and muscle fiber maintenance in miR-133a-deficient mice. FASEB J 30:3745–3758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen J-F, Tao Y, Li J et al (2010) microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. J Cell Biol 190:867–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gidlöf O, Andersson P, van der Pals J, Götberg M, Erlinge D (2011) Cardiospecific microRNA plasma levels correlate with troponin and cardiac function in patients with ST elevation myocardial infarction, are selectively dependent on renal elimination, and can be detected in urine samples. Cardiology 118:217–226

    Article  PubMed  Google Scholar 

  34. Glass C, Singla DK (2011) MicroRNA-1 transfected embryonic stem cells enhance cardiac myocyte differentiation and inhibit apoptosis by modulating the PTEN/Akt pathway in the infarcted heart. Am J Physiol Heart Circ Physiol 301:H2038–H2049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li J, Dong X, Wang Z, Wu J (2014) MicroRNA-1 in cardiac diseases and cancers. Korean J Physiol Pharmacol 18:359–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hua Y-T, Xu W-X, Li H, Xia M (2021) Emerging roles of MiR-133a in human cancers. J Cancer 12:198–206. https://doi.org/10.7150/jca.48769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Russell AP, Lamon S, Boon H et al (2013) Regulation of miRNAs in human skeletal muscle following acute endurance exercise and short-term endurance training. J Physiol 591:4637–4653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Denham J, Prestes PR (2016) Muscle-enriched microRNAs isolated from whole blood are regulated by exercise and are potential biomarkers of cardiorespiratory fitness. Front Genet 7:196

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wardle SL, Bailey MES, Kilikevicius A et al (2015) Plasma microRNA levels differ between endurance and strength athletes. PLoS ONE 10:e0122107

    Article  PubMed  PubMed Central  Google Scholar 

  40. Huang M-B, Xu H, Xie S-J, Zhou H, Qu L-H (2011) Insulin-like growth factor-1 receptor is regulated by microRNA-133 during skeletal myogenesis. PLoS ONE 6:e29173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Elia L, Contu R, Quintavalle M et al (2009) Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions. Circulation 120:2377–2385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rajpathak SN, Gunter MJ, Wylie-Rosett J et al (2009) The role of insulin-like growth factor-I and its binding proteins in glucose homeostasis and type 2 diabetes. Diabetes Metab Res Rev 25:3–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Al-Kafaji G, Al-Muhtaresh HA, Salem AH (2021) Expression and clinical significance of miR-1 and miR-133 in pre-diabetes. Biomed Rep 14:33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. D’Souza RF, Woodhead JST, Zeng N et al (2018) Circulatory exosomal miRNA following intense exercise is unrelated to muscle and plasma miRNA abundances. Am J Physiol Metab 315:E723–E733

    Google Scholar 

  45. McCarthy JJ (2011) The MyomiR network in skeletal muscle plasticity. Exerc Sport Sci Rev 39:150–154

    Article  PubMed  PubMed Central  Google Scholar 

  46. Siracusa J, Koulmann N, Bourdon S, Goriot M-E, Banzet S (2016) Circulating miRNAs as biomarkers of acute muscle damage in rats. Am J Pathol 186:1313–1327

    Article  CAS  PubMed  Google Scholar 

  47. Dai C, Xie Y, Zhuang X, Yuan Z (2018) MiR-206 inhibits epithelial ovarian cancer cells growth and invasion via blocking c-Met/AKT/mTOR signaling pathway. Biomed Pharmacother 104:763–770. https://doi.org/10.1016/j.biopha.2018.05.077

    Article  CAS  PubMed  Google Scholar 

  48. Zhang T, Liu M, Wang C, Lin C, Sun Y, Jin D (2011) Down-regulation of MiR-206 promotes proliferation and invasion of laryngeal cancer by regulating VEGF expression. Anticancer Res 31:3859–3863

    CAS  PubMed  Google Scholar 

  49. Chen A-H, Qin Y-E, Tang W-F, Tao J, Song H, Zuo M (2017) MiR-34a and miR-206 act as novel prognostic and therapy biomarkers in cervical cancer. Cancer Cell Int 17:63

    Article  PubMed  PubMed Central  Google Scholar 

  50. Olsen CM, Bain CJ, Jordan SJ et al (2007) Recreational physical activity and epithelial ovarian cancer: a case-control study, systematic review, and meta-analysis. Cancer Epidemiol Biomarkers Prev 16:2321–2330

    Article  PubMed  Google Scholar 

  51. Hosoda T, Zheng H, Cabral-da-Silva M et al (2011) Human cardiac stem cell differentiation is regulated by a mircrine mechanism. Circulation 123:1287–1296. https://doi.org/10.1161/CIRCULATIONAHA.110.982918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang X, Gee H, Rose B et al (2016) Regulation of the tumour suppressor PDCD4 by miR-499 and miR-21 in oropharyngeal cancers. BMC Cancer 16:86. https://doi.org/10.1186/s12885-016-2109-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li D, Xia L, Chen M et al (2017) miR-133b, a particular member of myomiRs, coming into playing its unique pathological role in human cancer. Oncotarget 8:50193–50208

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wahl P, Wehmeier UF, Jansen FJ et al (2016) Acute effects of different exercise protocols on the circulating vascular microRNAs -16, -21, and -126 in trained subjects. Front Physiol 7:1–10

    Article  CAS  Google Scholar 

  55. Serocki M, Bartoszewska S, Janaszak-Jasiecka A, Ochocka RJ, Collawn JF, Bartoszewski R (2018) miRNAs regulate the HIF switch during hypoxia: a novel therapeutic target. Angiogenesis 21:183–202. https://doi.org/10.1007/s10456-018-9600-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Larki P, Ahadi A, Zare A et al (2018) Up-regulation of miR-21, miR-25, miR-93, and miR-106b in gastric cancer. Iran Biomed J 22:367–373

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sheedy FJ (2015) Turning 21: induction of miR-21 as a key switch in the inflammatory response. Front Immunol 6:19

    Article  PubMed  PubMed Central  Google Scholar 

  58. Feng Y-H, Tsao C-J (2016) Emerging role of microRNA-21 in cancer. Biomed Rep 5:395–402. https://doi.org/10.3892/br.2016.747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Morishita S, Hamaue Y, Fukushima T, Tanaka T, Fu JB, Nakano J (2020) Effect of exercise on mortality and recurrence in patients with cancer: a systematic review and meta-analysis. Integr Cancer Ther 19:1534735420917462. https://doi.org/10.1177/1534735420917462

    Article  PubMed  PubMed Central  Google Scholar 

  60. van Solingen C, Seghers L, Bijkerk R et al (2009) Antagomir-mediated silencing of endothelial cell specific microRNA-126 impairs ischemia-induced angiogenesis. J Cell Mol Med 13:1577–1585

    Article  PubMed  Google Scholar 

  61. Barber JL, Zellars KN, Barringhaus KG, Bouchard C, Spinale FG, Sarzynski MA (2019) The effects of regular exercise on circulating cardiovascular-related microRNAs. Sci Rep 9:7527

    Article  PubMed  PubMed Central  Google Scholar 

  62. Dastah S, Tofighi A, Tolouei Azar J, Alivand M (2020) Aerobic exercise leads to upregulation of Mir-126 and angiogenic signaling in the heart tissue of diabetic rats. Gene Rep 21:100914

    Article  CAS  Google Scholar 

  63. Song W, Liang Q, Cai M, Tian Z (2020) HIF-1α-induced up-regulation of microRNA-126 contributes to the effectiveness of exercise training on myocardial angiogenesis in myocardial infarction rats. J Cell Mol Med 24:12970–12979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Alique M, Bodega G, Giannarelli C, Carracedo J, Ramírez R (2019) MicroRNA-126 regulates hypoxia-inducible factor-1α which inhibited migration, proliferation, and angiogenesis in replicative endothelial senescence. Sci Rep 9:7381. https://doi.org/10.1038/s41598-019-43689-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tang S-T, Wang F, Shao M, Wang Y, Zhu H-Q (2017) MicroRNA-126 suppresses inflammation in endothelial cells under hyperglycemic condition by targeting HMGB1. Vascul Pharmacol 88:48–55

    Article  CAS  PubMed  Google Scholar 

  66. Fan J-L, Zhang L, Bo X-H (2020) MiR-126 on mice with coronary artery disease by targeting S1PR2. Eur Rev Med Pharmacol Sci 24:893–904. https://doi.org/10.26355/eurrev_202001_20074

    Article  PubMed  Google Scholar 

  67. Sun X, Zhang M, Sanagawa A et al (2012) Circulating microRNA-126 in patients with coronary artery disease: correlation with LDL cholesterol. Thromb J 10:16

    Article  PubMed  PubMed Central  Google Scholar 

  68. Wang X, Lian Y, Wen X et al (2017) Expression of miR-126 and its potential function in coronary artery disease. Afr Health Sci 17:474–480

    Article  PubMed  PubMed Central  Google Scholar 

  69. Xu T, Liu Q, Yao J, Dai Y, Wang H, Xiao J (2015) Circulating microRNAs in response to exercise. Scand J Med Sci Sports 25:e149–e154

    Article  CAS  PubMed  Google Scholar 

  70. Saba R, Sorensen DL, Booth SA (2014) MicroRNA-146a: a dominant, negative regulator of the innate immune response. Front Immunol 5:578. https://doi.org/10.3389/fimmu.2014.00578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Taganov KD, Boldin MP, Chang K-J, Baltimore D (2006) NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 103:12481–12486. https://doi.org/10.1073/pnas.0605298103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhong L, Huot J, Simard MJ (2018) p38 activation induces production of miR-146a and miR-31 to repress E-selectin expression and inhibit transendothelial migration of colon cancer cells. Sci Rep 8:2334

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ludlow AT, Gratidão L, Ludlow LW, Spangenburg EE, Roth SM (2017) Acute exercise activates p38 MAPK and increases the expression of telomere-protective genes in cardiac muscle. Exp Physiol 102:397–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Alipoor B, Ghaedi H, Meshkani R et al (2017) Association of miR-146a expression and type 2 diabetes mellitus: a meta-analysis. Int J Mol Cell Med 6:156–163

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Bhatt K, Lanting LL, Jia Y et al (2016) Anti-inflammatory role of microRNA-146a in the pathogenesis of diabetic nephropathy. J Am Soc Nephrol 27:2277–2288

    Article  CAS  PubMed  Google Scholar 

  76. Rizzieri DA, Storms R, Chen D-F et al (2010) Natural killer cell-enriched donor lymphocyte infusions from A 3–6/6 HLA matched family member following nonmyeloablative allogeneic stem cell transplantation. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant 16:1107–1114. https://doi.org/10.1016/j.bbmt.2010.02.018

    Article  Google Scholar 

  77. Esteves JV, Enguita FJ, Machado UF (2017) MicroRNAs-mediated regulation of skeletal muscle GLUT4 expression and translocation in insulin resistance. J Diabetes Res 2017:7267910. https://doi.org/10.1155/2017/7267910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the staff of Klinik Bahasa in the Office of Research and Publication of the Faculty of Medicine, Public Health and Nursing Universitas Gadjah Mada for language editing and proofreading.

Funding

This work is supported by Final Project Recognition Program (RTA), Universitas Gadjah Mada, Yogyakarta, Indonesia number: 2607/UN1/DITLIT/DIT-LIT/PT/2020.

Author information

Authors and Affiliations

Authors

Contributions

The idea for this systematic review originated from Rahmaningsih Mara Sabirin. All authors contributed to the conceptualization and methodology of the study. Rahmaningsih Mara Sabirin and Junaedy Yunus conducted the literature search and data extraction. Rahmaningsih Mara Sabirin wrote the first draft of the manuscript. The other authors critically revised earlier versions of the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Rahmaningsih Mara Sabirin.

Ethics declarations

Conflict of interest

The authors certify that there is no conflict of interest with any financial organization regarding the material discussed in the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 74 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabirin, R.M., Yunus, J. & Agustiningsih, D. The effects of aerobic exercise on blood plasma microRNA level in healthy adults: a systematic review and meta-analysis. Sport Sci Health 19, 69–84 (2023). https://doi.org/10.1007/s11332-022-00914-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11332-022-00914-3

Keywords

Navigation