Skip to main content
Log in

Local cryotherapy is ineffective in accelerating recovery from exercise-induced muscle damage on biceps brachii

  • Original Article
  • Published:
Sport Sciences for Health Aims and scope Submit manuscript

Abstract

Purpose

The aim of this investigation was to evaluate the effects of local cryotherapy on the recovery from symptoms of exercise-induced muscle damage (EIMD) on biceps brachii.

Methods

Nineteen untrained women performed an eccentric protocol of damage induction (2 sets of 10 repetitions) in both arms after the baseline data collection. The cryotherapy was applied for 20 min, twice per day, for 4 days following the eccentric exercise. Randomly, one of the subject’s arms was assigned as intervention, and received cryotherapy, the opposite arm served as control. As muscle damage indirect markers, we collected muscle thickness, and echo intensity, delayed onset muscle soreness, and peak torque at baseline (PRE), and at 24, 48, 72, and 96 h.

Results

Muscle thickness at PRE was significantly lower than all time points in both experimental and control arms. Echo intensity at PRE was significantly lower than 24, 48, and 72 h in the experimental arm, and significantly lower than all time points in the control arm. Muscle soreness assessed by flexion–extension, and by self-palpation of both the experimental and the control arms significantly increased compared to the PRE value at 24, 48, and 72 h. Peak Torque of both experimental and control arm was significantly lower than all time points after EIMD. None of the muscle damage indirect markers showed any significant difference between arms at any moment (p > 0.05).

Conclusion

The results demonstrated that the protocol of cryotherapy utilized in the present study was not effective in enhancing the recovery from EIMD in untrained women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bleakley CM, Bieuzen F, Davison GW, Costello JT (2014) Whole-body cryotherapy: empirical evidence and theoretical perspectives. Open Access J Sport Med 5:25–36. doi:10.2147/OAJSM.S41655

    Article  Google Scholar 

  2. Martin SS, Spindler KP, Tarter JW et al (2001) Cryotherapy: an effective modality for decreasing intraarticular temperature after knee arthroscopy. Am J Sports Med 29:288–291

    Article  CAS  PubMed  Google Scholar 

  3. Swenson C, Sward L, Karlsson J (1996) Cryotherapy in sports medicine. Scand J Med Sci Sports 6:193–200. doi:10.1111/j.1600-0838.1996.tb00090.x

    Article  CAS  PubMed  Google Scholar 

  4. Wilcock IM, Cronin JB, Hing WA (2006) Physiological response to water immersion: a method for sport recovery? Sport Med 36:747–765. doi:10.2165/00007256-200636090-00003

    Article  Google Scholar 

  5. Karunakara RG, Lephart SM, Pincivero DM (1999) Changes in forearm blood flow during single and intermittent cold application. J Orthop Sport Phys Ther 29:177–180. doi:10.2519/jospt.1999.29.3.177

    Article  CAS  Google Scholar 

  6. Glenn RE, Spindler KP, Warren TA et al (2004) Cryotherapy decreases intraarticular temperature after ACL reconstruction. Clin Orthop Relat Res 2:268–272. doi:10.1097/01.blo.0000126302.41711.eb

    Article  Google Scholar 

  7. Ascensão A, Leite M, Rebelo AN et al (2011) Effects of cold water immersion on the recovery of physical performance and muscle damage following a one-off soccer match. J Sports Sci 29:217–225. doi:10.1080/02640414.2010.526132

    Article  PubMed  Google Scholar 

  8. Eston R, Peters D (1999) Effects of cold water immersion on the symptoms of exercise-induced muscle damage. J Sports Sci 17:231–238. doi:10.1080/026404199366136

    Article  CAS  PubMed  Google Scholar 

  9. Minett GM, Duffield R, Billaut F et al (2014) Cold-water immersion decreases cerebral oxygenation but improves recovery after intermittent-sprint exercise in the heat. Scand J Med Sci Sport 24:656–666. doi:10.1111/sms.12060

    Article  CAS  Google Scholar 

  10. Chen TC, Chen HL, Lin MJ et al (2010) Potent protective effect conferred by four bouts of low-intensity eccentric exercise. Med Sci Sports Exerc 42:1004–1012. doi:10.1249/MSS.0b013e3181c0a818

    Article  PubMed  Google Scholar 

  11. Flores DF, Gentil P, Brown LE et al (2011) Dissociated time course of recovery between genders after resistance exercise. J Strength Cond Res 25:3039–3044. doi:10.1519/JSC.0b013e318212dea4

    Article  PubMed  Google Scholar 

  12. Radaelli R, Bottaro M, Wilhelm EN et al (2012) Time course of strength and echo intensity recovery after resistance exercise in women. J Strength Cond Res 26:2577–2584. doi:10.1519/JSC.0b013e31823dae96

    Article  PubMed  Google Scholar 

  13. Pointon M, Duffield R, Cannon J, Marino FE (2011) Cold application for neuromuscular recovery following intense lower-body exercise. Eur J Appl Physiol 111:2977–2986. doi:10.1007/s00421-011-1924-1

    Article  PubMed  Google Scholar 

  14. Johar P, Grover V, Topp R, Behm DG (2012) A comparison of topical menthol to ice on pain, evoked tetanic and voluntary force during delayed onset muscle soreness. Int J Sports Phys Ther 7:314–322

    PubMed  PubMed Central  Google Scholar 

  15. Chen TC, Lin KY, Chen HL et al (2011) Comparison in eccentric exercise-induced muscle damage among four limb muscles. Eur J Appl Physiol 111:211–223. doi:10.1007/s00421-010-1648-7

    Article  PubMed  Google Scholar 

  16. MacIntyre DL, Reid WD, Lyster DM, McKenzie DC (2000) Different effects of strenuous eccentric exercise on the accumulation of neutrophils in muscle in women and men. Eur J Appl Physiol 81:47–53. doi:10.1007/PL00013796

    Article  CAS  PubMed  Google Scholar 

  17. Stupka N, Lowther S, Chorneyko K et al (2000) Gender differences in muscle inflammation after eccentric exercise. J Appl Physiol 89:2325–2332

    CAS  PubMed  Google Scholar 

  18. Barnett A (2006) Using recovery modalities between training sessions in elite athletes: does it help? Sport Med 36:781–796. doi:10.2165/00007256-200636090-00005

    Article  Google Scholar 

  19. Howatson G, Gaze D, Van Someren KA (2005) The efficacy of ice massage in the treatment of exercise-induced muscle damage. Scand J Med Sci Sport 15:416–422. doi:10.1111/j.1600-0838.2005.00437.x

    Article  CAS  Google Scholar 

  20. Oakley ET, Pardeiro RB, Powell JW, Millar AL (2013) The effects of multiple daily applications of ice to the hamstrings on biochemical measures, signs, and symptoms associated with exercise-induced muscle damage. J Strength Cond Res 27:2743–2751. doi:10.1519/JSC.0b013e31828830df

    Article  PubMed  Google Scholar 

  21. Kowal MA (1983) Review of physiological effects of cryotherapy. J Orthop Sports Phys Ther 5:66–73. doi:10.2519/jospt.1983.5.2.66

    Article  CAS  PubMed  Google Scholar 

  22. Newton MJ, Morgan GT, Chapman DW, Nosaka KK (2008) Comparison of responses to strenuous eccentric exercise of the elbow flexors between resistance-trained and untrained men. J Strength Cond Res 22:597–607. doi:10.1519/JSC.0b013e3181660003

    Article  PubMed  Google Scholar 

  23. Radaelli R, Bottaro M, Wagner DR et al (2014) Men and women experience similar muscle damage after traditional resistance training protocol. Isokinet Exerc Sci 22:47–54. doi:10.3233/IES-130519

    Google Scholar 

  24. Pinto RS, Gomes N, Radaelli R et al (2012) Effect of range of motion on muscle strength and thickness. J Strength Cond Res 26:2140–2145. doi:10.1519/JSC.0b013e31823a3b15

    Article  PubMed  Google Scholar 

  25. Nosaka K, Newton M (2002) Difference in the magnitude of muscle damage between maximal and submaximal eccentric loading. J Strength Cond Res 16:202–208. doi:10.1519/1533-4287(2002)016<0202:DITMOM>2.0.CO;2

    PubMed  Google Scholar 

  26. Fujikake T, Hart R, Nosaka K (2009) Changes in B-mode ultrasound echo intensity following injection of bupivacaine hydrochloride to rat hind limb muscles in relation to histologic changes. Ultrasound Med Biol 35:687–696. doi:10.1016/j.ultrasmedbio.2008.10.008

    Article  CAS  PubMed  Google Scholar 

  27. Tidball JG, Villalta SA (2010) Regulatory interactions between muscle and the immune system during muscle regeneration. Am J Physiol Regul Integr Comp Physiol 298:R1173–R1187. doi:10.1152/ajpregu.00735.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Urso ML (2013) Anti-inflammatory interventions and skeletal muscle injury: benefit or detriment? J Appl Physiol 115:920–928. doi:10.1152/japplphysiol.00036.2013

    Article  CAS  PubMed  Google Scholar 

  29. Tseng C-Y, Lee J-P, Tsai Y-S et al (2013) Topical cooling (icing) delays recovery from eccentric exercise-induced muscle damage. J Strength Cond Res 27:1354–1361. doi:10.1519/JSC.0b013e318267a22c

    Article  PubMed  Google Scholar 

  30. Cheung K, Hume PA, Maxwell L (2003) Delayed onset muscle soreness: treatment strategies and performance factors. Sport Med 33:145–164. doi:10.2165/00007256-200333020-00005

    Article  Google Scholar 

  31. Saka T, Akova B, Yazici Z et al (2009) Difference in the magnitude of muscle damage between elbow flexors and Knee extensors eccentric exercises. J Sport Sci Med 8:107–115

    Google Scholar 

  32. Enns DL, Tiidus PM (2010) The influence of estrogen on skeletal muscle: sex matters. Sport Med 40:41–58. doi:10.2165/11319760-000000000-00000

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the National Counsel of Technological and Scientific Development for the scientific initiation scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diulian Muniz Medeiros.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures of the present study were approved by the Federal University of Rio Grande do Sul Review Board, and they were performed in accordance with the ethical standards of the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, C.S., Medeiros, D.M., Prado, L.R. et al. Local cryotherapy is ineffective in accelerating recovery from exercise-induced muscle damage on biceps brachii. Sport Sci Health 13, 287–293 (2017). https://doi.org/10.1007/s11332-017-0355-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11332-017-0355-8

Keywords

Navigation