Skip to main content
Log in

The benefits of hypoglycemic therapy for patients with obstructive sleep apnea

  • Sleep Breathing Physiology and Disorders • Original Article
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Purpose

Obstructive sleep apnea (OSA) is often associated with glycemic abnormalities. This study is conducted to investigate the effects of hypoglycemic therapy on OSA-related indicators.

Method

We systematically searched Web of Science, PubMed, Embase, and the Cochrane Library for articles on OSA patients receiving any hypoglycemic drugs, published until December 25, 2022. Seven original studies were finally included. The proposal was registered with PROSPERO (CRD42022351206).

Results

In summary, in addition to reduced glycosylated hemoglobin A1c (HbA1c), we found that hypoglycemic treatment can lower the apnea–hypopnea index (AHI) by 7.07/h (p = 0.0001). Although long-term treatment (> 12 weeks) achieved a more significant reduction in HbA1c (− 1.57% vs. − 0.30%) compared to short-term treatment (≤ 12 weeks), there was no significant difference between the two in terms of AHI (intergroup p-value = 0.27). We also found that patients using sodium glucose cotransporter 2 inhibitors (SGLT2i) experienced a greater reduction in AHI (− 11.00/h, p < 0.00001). Additionally, hypoglycemic treatment also showed certain improvements in related indicators like Epworth Sleepiness Scale, body mass index, and blood pressure.

Conclusions

Our results affirm the benefits of hypoglycemic treatment for OSA patients and highlight the notable effect of SGLT2i. Further researches are needed to help doctors gain a comprehensive understanding of the interaction between OSA and glycemic abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. Jordan AS, McSharry DG, Malhotra A (2014) Adult obstructive sleep apnoea. Lancet 383(9918):736–747

    Article  PubMed  Google Scholar 

  2. Song SO et al (2019) Metabolic consequences of obstructive sleep apnea especially pertaining to diabetes mellitus and insulin sensitivity. Diabetes Metab J 43(2):144–155

    Article  PubMed  PubMed Central  Google Scholar 

  3. Koh HE et al (2022) Effect of obstructive sleep apnea on glucose metabolism. Eur J Endocrinol 186(4):457–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang Y et al (2022) Genetic determinants of cardiometabolic and pulmonary phenotypes and obstructive sleep apnoea in HCHS/SOL. EBioMedicine 84:104288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Reutrakul S, Mokhlesi B (2017) Obstructive sleep apnea and diabetes: a state of the art review. Chest 152(5):1070–1086

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tatsumi K et al (2005) Sleep oxygen desaturation and circulating leptin in obstructive sleep apnea-hypopnea syndrome. Chest 127(3):716–721

    Article  PubMed  Google Scholar 

  7. Münzberg H et al (2005) Leptin receptor action and mechanisms of leptin resistance. Cell Mol Life Sci 62(6):642–652

    Article  PubMed  Google Scholar 

  8. Messenger SA, Moreau JM, Ciriello J (2013) Effect of chronic intermittent hypoxia on leptin and leptin receptor protein expression in the carotid body. Brain Res 1513:51–60

    Article  CAS  PubMed  Google Scholar 

  9. Conde SV et al (2017) Insulin resistance: a new consequence of altered carotid body chemoreflex? J Physiol 595(1):31–41

    Article  CAS  PubMed  Google Scholar 

  10. Aurora RN, Punjabi NM (2013) Obstructive sleep apnoea and type 2 diabetes mellitus: a bidirectional association. Lancet Respir Med 1(4):329–338

    Article  PubMed  Google Scholar 

  11. Roden M et al (1996) Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Invest 97(12):2859–2865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Santomauro AT et al (1999) Overnight lowering of free fatty acids with Acipimox improves insulin resistance and glucose tolerance in obese diabetic and nondiabetic subjects. Diabetes 48(9):1836–1841

    Article  CAS  PubMed  Google Scholar 

  13. Hücking K et al (2003) Burst-like control of lipolysis by the sympathetic nervous system in vivo. J Clin Invest 111(2):257–264

    Article  PubMed  PubMed Central  Google Scholar 

  14. Julius S et al (1992) The interconnection between sympathetics, microcirculation, and insulin resistance in hypertension. Blood Press 1(1):9–19

    Article  CAS  PubMed  Google Scholar 

  15. Jamerson KA et al (1993) Reflex sympathetic activation induces acute insulin resistance in the human forearm. Hypertension 21(5):618–623

    Article  CAS  PubMed  Google Scholar 

  16. Punjabi NM, Polotsky VY (2005) Disorders of glucose metabolism in sleep apnea. J Appl Physiol (1985) 99(5):1998–2007

    Article  CAS  PubMed  Google Scholar 

  17. Kent BD, McNicholas WT, Ryan S (2015) Insulin resistance, glucose intolerance and diabetes mellitus in obstructive sleep apnoea. J Thorac Dis 7(8):1343–1357

    PubMed  PubMed Central  Google Scholar 

  18. Lavie L (2012) Oxidative stress inflammation and endothelial dysfunction in obstructive sleep apnea. Front Biosci (Elite Ed) 4(4):1391–1403

    Article  MathSciNet  PubMed  Google Scholar 

  19. Newsholme P et al (2019) Oxidative stress pathways in pancreatic β-cells and insulin-sensitive cells and tissues: importance to cell metabolism, function, and dysfunction. Am J Physiol Cell Physiol 317(3):C420-c433

    Article  CAS  PubMed  Google Scholar 

  20. Penev PD (2012) Update on energy homeostasis and insufficient sleep. J Clin Endocrinol Metab 97(6):1792–1801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shechter A (2017) Obstructive sleep apnea and energy balance regulation: a systematic review. Sleep Med Rev 34:59–69

    Article  PubMed  Google Scholar 

  22. Bottini P et al (2008) Autonomic neuropathy increases the risk of obstructive sleep apnea in obese diabetics. Respiration 75(3):265–271

    Article  PubMed  Google Scholar 

  23. Bottini P et al (2003) Sleep-disordered breathing in nonobese diabetic subjects with autonomic neuropathy. Eur Respir J 22(4):654–660

    Article  CAS  PubMed  Google Scholar 

  24. Tahrani AA et al (2012) Obstructive sleep apnea and diabetic neuropathy: a novel association in patients with type 2 diabetes. Am J Respir Crit Care Med 186(5):434–441

    Article  PubMed  PubMed Central  Google Scholar 

  25. Adderley NJ et al (2020) Obstructive sleep apnea, a risk factor for cardiovascular and microvascular disease in patients with type 2 diabetes: findings from a population-based cohort study. Diabetes Care 43(8):1868–1877

    Article  PubMed  Google Scholar 

  26. Lin R et al (2022) Positive airway pressure therapy in heart failure patients comorbid with obstructive sleep apnea: Cardiovascular outcomes and nighttime-duration effect. Eur J Clin Invest 52(10):e13821

    Article  CAS  PubMed  Google Scholar 

  27. Lin R et al (2023) Effect of different anti-cardiovascular disease treatments on the severity of obstructive sleep apnea. J Sleep Res

  28. Mokhlesi B et al (2017) Effect of one week of CPAP treatment of obstructive sleep apnoea on 24-hour profiles of glucose, insulin and counter-regulatory hormones in type 2 diabetes. Diabetes Obes Metab 19(3):452–456

    Article  CAS  PubMed  Google Scholar 

  29. Simera I et al (2010) A catalogue of reporting guidelines for health research. Eur J Clin Invest 40(1):35–53

    Article  CAS  PubMed  Google Scholar 

  30. Makris K, Spanou L (2011) Is there a relationship between mean blood glucose and glycated hemoglobin? J Diabetes Sci Technol 5(6):1572–1583

    Article  PubMed  PubMed Central  Google Scholar 

  31. Jadad AR et al (1996) Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 17(1):1–12

    Article  CAS  PubMed  Google Scholar 

  32. Wells G et al (2009) The Newcastle–Ottawa Scale (NOS) for assessing the quality if nonrandomized studies in meta-analyses. [cited 2009 2009–10–19.; Available from: http://www.ohrica/programs/clinical_epidemiology/oxfordasp

  33. Richardson M, Garner P, Donegan S (2019) Interpretation of subgroup analyses in systematic reviews: a tutorial. Clin Epidemiol Global Health 7(2):192–198

    Article  Google Scholar 

  34. Tsapas A et al (2020) Comparative effectiveness of glucose-lowering drugs for type 2 diabetes: a systematic review and network meta-analysis. Ann Intern Med 173(4):278–286

    Article  PubMed  Google Scholar 

  35. Mason M, Welsh EJ and Smith I (2013) Drug therapy for obstructive sleep apnoea in adults. Cochrane Database Syst Rev (5):Cd003002

  36. Zhang J et al (2017) Therapeutic effects of different drugs on obstructive sleep apnea/hypopnea syndrome in children. World J Pediatr 13(6):537–543

    Article  CAS  PubMed  Google Scholar 

  37. Scheen AJ (2015) Pharmacodynamics, efficacy and safety of sodium-glucose co-transporter type 2 (SGLT2) inhibitors for the treatment of type 2 diabetes mellitus. Drugs 75(1):33–59

    Article  CAS  PubMed  Google Scholar 

  38. Heerspink HJ et al (2016) Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation 134(10):752–772

    Article  CAS  PubMed  Google Scholar 

  39. Yang D et al (2013) Effects of continuous positive airway pressure on glycemic control and insulin resistance in patients with obstructive sleep apnea: a meta-analysis. Sleep Breath 17(1):33–38

    Article  PubMed  Google Scholar 

  40. Tsapas A et al (2021) Comparative efficacy of glucose-lowering medications on body weight and blood pressure in patients with type 2 diabetes: a systematic review and network meta-analysis. Diabetes Obes Metab 23(9):2116–2124

    Article  CAS  PubMed  Google Scholar 

  41. Blackman A et al (2014) Liraglutide 3.0 mg reduces severity of obstructive sleep apnoea and body weight in obese individuals with moderate or severe disease: SCALE sleep apnoea trial. Diabetologia 57(1 SUPPL. 1):S85

    Google Scholar 

  42. Yazıcı D et al (2023) Clinical impact of glucagon-like peptide-1 receptor analogs on the complications of obesity. Obes Facts 16(2):149–163

    Article  PubMed  Google Scholar 

  43. Gomez-Peralta F et al (2015) An association between liraglutide treatment and reduction in excessive daytime sleepiness in obese subjects with type 2 diabetes. BMC Endocr Disord 15:78

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zhang Y et al (2023) Genetic associations between sleep traits and cognitive ageing outcomes in the Hispanic Community Health Study/Study of Latinos. EBioMedicine 87:104393

    Article  CAS  PubMed  Google Scholar 

  45. Li J et al (2023) Efficacy of CPAP duration and adherence for cognitive improvement in patients with obstructive sleep apnea: a meta-analysis of randomized controlled trials. Sleep Breath 27(3):973–982

    Article  PubMed  Google Scholar 

  46. Lal C et al (2021) Excessive daytime sleepiness in obstructive sleep apnea. mechanisms and clinical management. Ann Am Thorac Soc 18(5):757–768

    Article  PubMed  PubMed Central  Google Scholar 

  47. Furukawa S et al (2018) The effectiveness of dapagliflozin for sleep-disordered breathing among Japanese patients with obesity and type 2 diabetes mellitus. Endocr J 65(9):953–961

    Article  CAS  PubMed  Google Scholar 

  48. Brown E et al (2019) Weight loss variability with SGLT2 inhibitors and GLP-1 receptor agonists in type 2 diabetes mellitus and obesity: Mechanistic possibilities. Obes Rev 20(6):816–828

    Article  CAS  PubMed  Google Scholar 

  49. Tuomilehto H, Seppä J, Uusitupa M (2013) Obesity and obstructive sleep apnea–clinical significance of weight loss. Sleep Med Rev 17(5):321–329

    Article  PubMed  Google Scholar 

  50. Gaines J et al (2016) Inflammation mediates the association between visceral adiposity and obstructive sleep apnea in adolescents. Am J Physiol Endocrinol Metab 311(5):E851-e858

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  51. Isono S (2009) Obstructive sleep apnea of obese adults: pathophysiology and perioperative airway management. Anesthesiology 110(4):908–921

    Article  PubMed  Google Scholar 

  52. Perger E, Mattaliano P, Lombardi C (2019) Menopause and Sleep Apnea. Maturitas 124:35–38

    Article  PubMed  Google Scholar 

  53. Iacobellis G, Gra-Menendez S (2020) Effects of dapagliflozin on epicardial fat thickness in patients with type 2 diabetes and obesity. Obesity (Silver Spring) 28(6):1068–1074

    Article  CAS  PubMed  Google Scholar 

  54. Drucker DJ (2018) Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Metab 27(4):740–756

    Article  CAS  PubMed  Google Scholar 

  55. Zhang Y et al (2019) Improvement in nocturnal hypoxemia in obese patients with obstructive sleep apnea after bariatric surgery: a meta-analysis. Obes Surg 29(2):601–608

    Article  MathSciNet  PubMed  Google Scholar 

  56. Greenburg DL, Lettieri CJ, Eliasson AH (2009) Effects of surgical weight loss on measures of obstructive sleep apnea: a meta-analysis. Am J Med 122(6):535–542

    Article  PubMed  Google Scholar 

  57. Anandam A et al (2013) Effects of dietary weight loss on obstructive sleep apnea: a meta-analysis. Sleep Breath 17(1):227–234

    Article  PubMed  Google Scholar 

  58. Sahni N, Bansal S (2019) Impact of weight loss on sleep apnea. Int J Head Neck Surg 10(4):86–91

    Article  Google Scholar 

  59. Conway B, Rene A (2004) Obesity as a disease: no lightweight matter. Obes Rev 5(3):145–151

    Article  CAS  PubMed  Google Scholar 

  60. Haslam DW, James WP (2005) Obesity. Lancet 366(9492):1197–1209

    Article  PubMed  Google Scholar 

  61. Baguet JP et al (2012) Mechanisms of cardiac dysfunction in obstructive sleep apnea. Nat Rev Cardiol 9(12):679–688

    Article  CAS  PubMed  Google Scholar 

  62. Paschou SA et al (2022) Sleep apnea and cardiovascular risk in patients with prediabetes and type 2 diabetes. Nutrients 14(23):4989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Khurshid K et al (2016) Effect of antihypertensive medications on the severity of obstructive sleep apnea: a systematic review and meta-analysis. J Clin Sleep Med 12(8):1143–1151

    Article  PubMed  PubMed Central  Google Scholar 

  64. Nazarzadeh M et al (2021) Blood pressure lowering and risk of new-onset type 2 diabetes: an individual participant data meta-analysis. Lancet 398(10313):1803–1810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nazarzadeh M et al (2022) Blood pressure-lowering treatment for prevention of major cardiovascular diseases in people with and without type 2 diabetes: an individual participant-level data meta-analysis. Lancet Diabetes Endocrinol 10(9):645–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mir T et al (2021) SGLT2 inhibitors and sleep apnea; how helpful are the medications: a meta-analysis. Endocr Metabol Sci 2:100084

    Article  CAS  Google Scholar 

  67. Jiang W et al (2022) Efficacy and safety of liraglutide in patients with type 2 diabetes mellitus and severe obstructive sleep apnea. Sleep Breath 27(5):1687–1694

  68. Gutiérrez-Carrasquilla L et al (2020) Effect of glucose improvement on nocturnal sleep breathing parameters in patients with type 2 diabetes: the candy dreams study. J Clin Med 9(4):1022

    Article  PubMed  PubMed Central  Google Scholar 

  69. Tang Y et al (2019) Effect of dapagliflozin on obstructive sleep apnea in patients with type 2 diabetes: a preliminary study. Nutr Diab 9(1):32

    Article  Google Scholar 

  70. Sawada K et al (2018) Effect of sodium glucose cotransporter 2 inhibitors on obstructive sleep apnea in patients with type 2 diabetes. Endocr J 65(4):461–467

    Article  CAS  PubMed  Google Scholar 

  71. Liu A et al (2016) Does enhanced insulin sensitivity improve sleep measures in patients with obstructive sleep apnea: a randomized, placebo-controlled pilot study. Sleep Med 22:57–60

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by the Hunan Provincial Natural Science Foundation of China (No. 2023JJ20098), the Young Elite Scientists Sponsorship Program by CAST (No. 2023QNRC001), the Hunan Provincial Education Reform Project (No. HNJG-20230104), the Hunan Provincial Degree & Postgraduate Education Reform Project (No. 2023JGYB016, No. 2023JGYB026), the Undergraduate Education Reform Project of Central South University (No. 2023CG006, No. 2023CG015), the Degree & Postgraduate Education Reform Project of Central South University (No. 2023JGB002, No. 2023JGB019, No. 2024YJSKS001), and the Innovation and Entrepreneurship Training Program (No. S202310533296).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoli Su, Minhan Yi or Yuan Zhang.

Ethics declarations

Ethics approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee (Central South University) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with human participants performed by any of the authors.

Informed consent

This article does not contain any studies with human participants performed by any of the authors.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 260 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, R., Yan, W., He, M. et al. The benefits of hypoglycemic therapy for patients with obstructive sleep apnea. Sleep Breath (2024). https://doi.org/10.1007/s11325-024-03015-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11325-024-03015-2

Keywords

Navigation