Skip to main content

Advertisement

Log in

Chronic intermittent hypoxia exposure induces kidney injury in growing rats

  • Sleep Breathing Physiology and Disorders • Original Article
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Objective

The objectives of this paper are to examine the effect of chronic intermittent hypoxia (CIH) on the morphological changes in the kidney of growing rats and to explore the mechanisms underlying the CIH-induced renal damage.

Methods

Forty Sprague-Dawley rats were randomly divided into two groups: 2 and 4 weeks CIH groups (2IH, 4IH), and in the control group 2 and 4 weeks air-stimulated groups (2C, 4C), with 10 rats in each group. Pathological changes of renal tissue were observed by HE staining, PAS staining, and Masson staining. Real-time PCR method was used to detect the mRNA expression of HIF-1α, CuZnSOD/ZnSOD, and MnSOD in renal tissue.

Results

(1) Intermittent hypoxia (IH) caused morphological damage in the kidney. Hypertrophy of epithelial cells in the kidney tubules and dilation in the glomeruli were observed under light microscope in HE and PAS stain, especially in 4IH group. Masson staining showed no significant fibrotic response in the IH groups. (2) Compared with the corresponding control groups, the levels of serum SOD were significantly lower in CIH groups, and especially in 4IH group. The mRNA expression of Cu/ZnSOD and MnSOD in CIH groups decreased significantly as compared to control groups. The mRNA levels of HIF-1α in the kidney were significantly higher in CIH groups than those in the corresponding control groups.

Conclusion

Oxidative stress played a critical role in renal damage by up-regulating HIF-1α transcription and down-regulating Cu/ZnSOD and MnSOD transcription after chronic intermittent hypoxia exposure in growing rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CIH:

chronic intermittent hypoxia

OSAHS:

obstructive sleep apnea hypopnea syndrome

HIF-1α:

hypoxia-inducible factor 1-alpha

SOD:

superoxide dismutase

Cu/ZnSOD:

copper-zinc superoxide dismutase

MnSOD:

manganese superoxide dismutase

PAS:

periodic acid–Schiff stain

HE:

hematoxylin and eosin stain

qRT-PCR:

real-time polymerase chain reaction

ROS:

reactive oxygen species

IRI:

ischemia reperfusion injury

References

  1. Guilleminault C, Abad VC (2004) Obstructive sleep apnea syndromes. Med Clin N Am 88(3):611–630, viii. https://doi.org/10.1016/j.mcna.2004.01.002

    Article  PubMed  Google Scholar 

  2. Wildhaber JH, Moeller A (2007) Sleep and respiration in children: time to wake up! Swiss Med Wkly 137(49–50):689–694

    PubMed  Google Scholar 

  3. Li AM, So HK, Au CT, Ho C, Lau J, Ng SK, Abdullah VJ, Fok TF, Wing YK (2010) Epidemiology of obstructive sleep apnoea syndrome in Chinese children: a two-phase community study. Thorax 65(11):991–997. https://doi.org/10.1136/thx.2010.134858

    Article  PubMed  Google Scholar 

  4. Levy P, Tamisier R, Arnaud C, Monneret D, Baguet JP, Stanke-Labesque F, Dematteis M, Godin-Ribuot D, Ribuot C, Pepin JL (2012) Sleep deprivation, sleep apnea and cardiovascular diseases. Front Biosci (Elite Ed) 4:2007–2021

    Google Scholar 

  5. Schober AK, Neurath MF, Harsch IA (2011) Prevalence of sleep apnoea in diabetic patients. Clin Respir J 5(3):165–172. https://doi.org/10.1111/j.1752-699X.2010.00216.x

    Article  PubMed  Google Scholar 

  6. Badran M, Golbidi S, Devlin A, Ayas N, Laher I (2014) Chronic intermittent hypoxia causes endothelial dysfunction in a mouse model of diet-induced obesity. Sleep Med 15(5):596–602. https://doi.org/10.1016/j.sleep.2014.01.013

    Article  PubMed  Google Scholar 

  7. Bhattacharjee R, Kheirandish-Gozal L, Pillar G, Gozal D (2009) Cardiovascular complications of obstructive sleep apnea syndrome: evidence from children. Prog Cardiovasc Dis 51(5):416–433. https://doi.org/10.1016/j.pcad.2008.03.002

    Article  PubMed  Google Scholar 

  8. Serebrovskaya TV, Xi L (2015) Intermittent hypoxia in childhood: the harmful consequences versus potential benefits of therapeutic uses. Front Pediatr 3:44. https://doi.org/10.3389/fped.2015.00044

    Article  PubMed  PubMed Central  Google Scholar 

  9. Martin RJ, Wang K, Koroglu O, Di Fiore J, Kc P (2011) Intermittent hypoxic episodes in preterm infants: do they matter? Neonatology 100(3):303–310. https://doi.org/10.1159/000329922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Martin RJ, Di Fiore JM, Macfarlane PM, Wilson CG (2012) Physiologic basis for intermittent hypoxic episodes in preterm infants. Adv Exp Med Biol 758:351–358. https://doi.org/10.1007/978-94-007-4584-1_47

    Article  CAS  PubMed  Google Scholar 

  11. Bass JL, Corwin M, Gozal D, Moore C, Nishida H, Parker S, Schonwald A, Wilker RE, Stehle S, Kinane TB (2004) The effect of chronic or intermittent hypoxia on cognition in childhood: a review of the evidence. Pediatrics 114(3):805–816. https://doi.org/10.1542/peds.2004-0227

    Article  PubMed  Google Scholar 

  12. Cai XH, Li XC, Jin SW, Liang DS, Wen ZW, Cao HC, Mei HF, Wu Y, Lin ZD, Wang LX (2014) Endoplasmic reticulum stress plays critical role in brain damage after chronic intermittent hypoxia in growing rats. Exp Neurol 257:148–156. https://doi.org/10.1016/j.expneurol.2014.04.029

    Article  CAS  PubMed  Google Scholar 

  13. Cai XH, Li XC, QQ H, CY Y, Zhou YH, MS S, Zhao YP, YL H, Wang LX (2013) Multiple system morbidities associated with children with snore symptom. Pediatr Pulmonol 48(4):381–389. https://doi.org/10.1002/ppul.22653

    Article  PubMed  Google Scholar 

  14. Verhulst SL, Van Hoeck K, Schrauwen N, Haentjens D, Rooman R, Van Gaal L, De Backer W, Desager KN (2008) Sleep-disordered breathing and proteinuria in overweight and obese children and adolescents. Horm Res 70(4):224–229. https://doi.org/10.1159/000151594

    Article  CAS  PubMed  Google Scholar 

  15. Krishna J, Shah ZA, Merchant M, Klein JB, Gozal D (2006) Urinary protein expression patterns in children with sleep-disordered breathing: preliminary findings. Sleep Med 7(3):221–227. https://doi.org/10.1016/j.sleep.2005.09.010

    Article  PubMed  Google Scholar 

  16. Eckardt KU, Rosenberger C, Jurgensen JS, Wiesener MS (2003) Role of hypoxia in the pathogenesis of renal disease. Blood Purif 21(3):253–257

    Article  PubMed  Google Scholar 

  17. Wang Y, Guo SZ, Bonen A, Li RC, Kheirandish-Gozal L, Zhang SX, Brittian KR, Gozal D (2011) Monocarboxylate transporter 2 and stroke severity in a rodent model of sleep apnea. J Neurosci 31(28):10241–10248. https://doi.org/10.1523/JNEUROSCI.1462-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cai XH, Zhou YH, Zhang CX, LG H, Fan XF, Li CC, Zheng GQ, Gong YS (2010) Chronic intermittent hypoxia exposure induces memory impairment in growing rats. Acta Neurobiol Exp (Wars) 70(3):279–287

    Google Scholar 

  19. Lee EJ, Woodske ME, Zou B, O'Donnell CP (2009) Dynamic arterial blood gas analysis in conscious, unrestrained C57BL/6J mice during exposure to intermittent hypoxia. J Appl Physiol (1985) 107(1):290–294. https://doi.org/10.1152/japplphysiol.91255.2008

    Article  CAS  Google Scholar 

  20. Morgan BJ (2009) Intermittent hypoxia: keeping it real. J Appl Physiol (1985) 107(1):1–3. https://doi.org/10.1152/japplphysiol.00304.2009

    Article  Google Scholar 

  21. Jurado-Gamez B, Fernandez-Marin MC, Gomez-Chaparro JL, Munoz-Cabrera L, Lopez-Barea J, Perez-Jimenez F, Lopez-Miranda J (2011) Relationship of oxidative stress and endothelial dysfunction in sleep apnoea. Eur Respir J 37(4):873–879. https://doi.org/10.1183/09031936.00027910

    Article  CAS  PubMed  Google Scholar 

  22. Nair D, Dayyat EA, Zhang SX, Wang Y, Gozal D (2011) Intermittent hypoxia-induced cognitive deficits are mediated by NADPH oxidase activity in a murine model of sleep apnea. PLoS One 6(5):e19847. https://doi.org/10.1371/journal.pone.0019847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Khayat R, Patt B, Hayes D Jr (2009) Obstructive sleep apnea: the new cardiovascular disease. Part I: obstructive sleep apnea and the pathogenesis of vascular disease. Heart Fail Rev 14(3):143–153. https://doi.org/10.1007/s10741-008-9112-z

    Article  PubMed  Google Scholar 

  24. Chou YT, Lee PH, Yang CT, Lin CL, Veasey S, Chuang LP, Lin SW, Lin YS, Chen NH (2011) Obstructive sleep apnea: a stand-alone risk factor for chronic kidney disease. Nephrol Dial Transplant 26(7):2244–2250. https://doi.org/10.1093/ndt/gfq821

    Article  PubMed  Google Scholar 

  25. Nicholl DD, Ahmed SB, Loewen AH, Hemmelgarn BR, Sola DY, Beecroft JM, Turin TC, Hanly PJ (2012) Declining kidney function increases the prevalence of sleep apnea and nocturnal hypoxia. Chest 141(6):1422–1430. https://doi.org/10.1378/chest.11-1809

    Article  PubMed  Google Scholar 

  26. Ding W, Cai Y, Wang W, Ji L, Dong Y, Zhang X, Su M, Liu J, Lu G, Zhang X (2016) Adiponectin protects the kidney against chronic intermittent hypoxia-induced injury through inhibiting endoplasmic reticulum stress. Sleep Breath. https://doi.org/10.1007/s11325-016-1321-4

  27. Abuyassin B, Sharma K, Ayas NT, Laher I (2015) Obstructive sleep apnea and kidney disease: a potential bidirectional relationship? J Clin Sleep Med 11(8):915–924. https://doi.org/10.5664/jcsm.4946

    PubMed  PubMed Central  Google Scholar 

  28. Buchner NJ, Wissing KR, Stegbauer J, Quack I, Weiner SM, Kramer BK, Rump LC (2011) The renal resistance index is increased in mild-to-moderate obstructive sleep apnoea and is reduced under continuous positive airway pressure. Nephrol Dial Transplant 26(3):914–920. https://doi.org/10.1093/ndt/gfq472

    Article  PubMed  Google Scholar 

  29. Wissing KR, Buchner NJ, Stegbauer J, Rump LC (2007) Renal resistance index in patients with obstructive sleep apnea. Dtsch Med Wochenschr 132(36):1815–1819. https://doi.org/10.1055/s-2007-984970

    Article  CAS  PubMed  Google Scholar 

  30. Bonventre JV, Yang L (2011) Cellular pathophysiology of ischemic acute kidney injury. J Clin Invest 121(11):4210–4221. https://doi.org/10.1172/JCI45161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tirapelli LF, Barione DF, Trazzi BF, Tirapelli DP, Novas PC, Silva CS, Martinez M, Costa RS, Tucci S Jr, Suaid HJ, Cologna AJ, Martins AC (2009) Comparison of two models for evaluation histopathology of experimental renal ischemia. Transplant Proc 41(10):4083–4087. https://doi.org/10.1016/j.transproceed.2009.09.061

    Article  CAS  PubMed  Google Scholar 

  32. Sun W, Yin X, Wang Y, Tan Y, Cai L, Wang B, Cai J, Fu Y (2012) Intermittent hypoxia-induced renal antioxidants and oxidative damage in male mice: hormetic dose response. Dose Response 11(3):385–400. https://doi.org/10.2203/dose-response.12-027.Cai

    PubMed  PubMed Central  Google Scholar 

  33. Gozal E, Sachleben LR Jr, Rane MJ, Vega C, Gozal D (2005) Mild sustained and intermittent hypoxia induce apoptosis in PC-12 cells via different mechanisms. Am J Phys Cell Physiol 288(3):C535–C542. https://doi.org/10.1152/ajpcell.00270.2004

    Article  CAS  Google Scholar 

  34. Yuan G, Nanduri J, Khan S, Semenza GL, Prabhakar NR (2008) Induction of HIF-1alpha expression by intermittent hypoxia: involvement of NADPH oxidase, Ca2+ signaling, prolyl hydroxylases, and mTOR. J Cell Physiol 217(3):674–685. https://doi.org/10.1002/jcp.21537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. da Rosa DP, Forgiarini LF, Baronio D, Feijo CA, Martinez D, Marroni NP (2012) Simulating sleep apnea by exposure to intermittent hypoxia induces inflammation in the lung and liver. Mediat Inflamm 2012:879419. https://doi.org/10.1155/2012/879419

    Google Scholar 

  36. Westhoff M, Litterst P (2012) Obstructive sleep apnoea and oxidative stress. Pneumologie 66(10):610–615. https://doi.org/10.1055/s-0032-1325691

    Article  CAS  PubMed  Google Scholar 

  37. Ntalapascha M, Makris D, Kyparos A, Tsilioni I, Kostikas K, Gourgoulianis K, Kouretas D, Zakynthinos E (2013) Oxidative stress in patients with obstructive sleep apnea syndrome. Sleep Breath 17(2):549–555. https://doi.org/10.1007/s11325-012-0718-y

    Article  PubMed  Google Scholar 

  38. Katsoulis K, Kontakiotis T, Spanogiannis D, Vlachogiannis E, Kougioulis M, Gerou S, Daskalopoulou E (2011) Total antioxidant status in patients with obstructive sleep apnea without comorbidities: the role of the severity of the disease. Sleep Breath 15(4):861–866. https://doi.org/10.1007/s11325-010-0456-y

    Article  PubMed  Google Scholar 

  39. Nanduri J, Wang N, Yuan G, Khan SA, Souvannakitti D, Peng YJ, Kumar GK, Garcia JA, Prabhakar NR (2009) Intermittent hypoxia degrades HIF-2alpha via calpains resulting in oxidative stress: implications for recurrent apnea-induced morbidities. Proc Natl Acad Sci U S A 106(4):1199–1204. https://doi.org/10.1073/pnas.0811018106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Zhejiang Provincial Natural Science Foundation Grant (LY17H010004), Scientific Research Foundation of Health Bureau of Zhejiang Province (2018ZD010), Wenzhou City Science and Technology Bureau Grant (Y20170133), National Science-technology Support Program (2015BAI12B09), and Project of Key Innovative Disciplines of Children Sleep Medicine of Zhejiang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Hong Cai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in this study were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poonit, ND., Zhang, YC., Ye, CY. et al. Chronic intermittent hypoxia exposure induces kidney injury in growing rats. Sleep Breath 22, 453–461 (2018). https://doi.org/10.1007/s11325-017-1587-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-017-1587-1

Keywords

Navigation