Skip to main content
Log in

Toward a Nanoencapsulated EPR Imaging Agent for Clinical Use

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Progress toward developing a novel radiocontrast agent for determining pO2 in tumors in a clinical setting is described. The imaging agent is designed for use with electron paramagnetic resonance imaging (EPRI), in which the collision of a paramagnetic probe molecule with molecular oxygen causes a spectroscopic change which can be calibrated to give the real oxygen concentration in the tumor tissue.

Procedures

The imaging agent is based on a nanoscaffold of aluminum hydroxide (boehmite) with sizes from 100 to 200 nm, paramagnetic probe molecule, and encapsulation with a gas permeable, thin (10–20 nm) polymer layer to separate the imaging agent and body environment while still allowing O2 to interact with the paramagnetic probe. A specially designed deuterated Finland trityl (dFT) is covalently attached on the surface of the nanoparticle through 1,3-dipolar addition of the alkyne on the dFT with an azide on the surface of the nanoscaffold. This click-chemistry reaction affords 100% efficiency of the trityl attachment as followed by the complete disappearance of the azide peak in the infrared spectrum. The fully encapsulated, dFT-functionalized nanoparticle is referred to as RADI-Sense.

Results

Side-by-side in vivo imaging comparisons made in a mouse model made between RADI-Sense and free paramagnetic probe (OX-071) showed oxygen sensitivity is retained and RADI-Sense can create 3D pO2 maps of solid tumors

Conclusions

A novel encapsulated nanoparticle EPR imaging agent has been described which could be used in the future to bring EPR imaging for guidance of radiotherapy into clinical reality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data needed to evaluate the conclusions of the paper are present in the paper.

References

  1. Thomlinson RH, Gray LH (1955) The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer 9:539–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vaupel P, Hockel M, Mayer A (Aug 2007) Detection and characterization of tumor hypoxia using pO2 histography. Antioxid Redox Signal 9:1221–1235

    Article  CAS  PubMed  Google Scholar 

  3. Brown JM, Wilson WR (2004) Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer 4:437–447

    Article  CAS  PubMed  Google Scholar 

  4. Juan CA, Pérez de la Lastra JM, Plou FJ, Pérez-Lebeña E (2021) The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. Int J Mol Sci 22(9):4642. https://doi.org/10.3390/ijms22094642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Epel B, Maggio MC, Barth ED, Miller RC, Pelizzari CA, Krzykawska-Serda M et al (2019) Oxygen-guided radiation therapy. Int J Radiat Oncol Biol Phys 103:977–984

    Article  PubMed  Google Scholar 

  6. Williams BB, al Hallaq H, Chandramouli GVR, Barth ED, Rivers JN, Lewis M et al (2002) Imaging spin probe distribution in the tumor of a living mouse with 250 MHz EPR: correlation with BOLD MRI. Magn Reson Med 47:634–638

    Article  PubMed  Google Scholar 

  7. Elas M, Williams BB, Parasca A, Mailer C, Pelizzari CA, Lewis MA et al (2003) Quantitative tumor oxymetric images from 4D electron paramagnetic resonance imaging (EPRI): methodology and comparison with blood oxygen level-dependent (BOLD) MRI. Magn Reson Med 49:682–691

    Article  PubMed  Google Scholar 

  8. Gordon Y, Partovi S, Müller-Eschner M, Amarteifio E, Bäuerle T, Weber M-A et al (2014) Dynamic contrast-enhanced magnetic resonance imaging: fundamentals and application to the evaluation of the peripheral perfusion. Cardiovasc Diagn Ther 4:147–164

    PubMed  PubMed Central  Google Scholar 

  9. Chen F, Li S, Sun D (2018) Methods of blood oxygen level-dependent magnetic resonance imaging analysis for evaluating renal oxygenation. Kidney Blood Press Res 43:378

    Article  CAS  PubMed  Google Scholar 

  10. Nrusingh CB, Andres A, Yan X, Saeid Z, Quing Z, Christopher P et al (2011) Imaging tumor hypoxia by near-infrared fluorescence tomography. J Biomed Opt 16:066009

    Article  Google Scholar 

  11. Epel B, Kotecha M, Halpern HJ (2017) In-vivo preclinical cancer and tissue engineering applications of absolute oxygen imaging using pulse EPR. J Magn Reson 280:149–157

    Article  CAS  PubMed  Google Scholar 

  12. Elas M, Ahn KH, Parasca A, Barth ED, Lee D, Haney C et al (2006) Electron paramagnetic resonance oxygen images correlate spatially and quantitatively with oxylite oxygen measurements. Clin Cancer Res 12:4209–4217

    Article  CAS  PubMed  Google Scholar 

  13. Halpern HJ, Yu C, Peric M, Barth ED, Karczmar GS, River JN et al (1996) Measurement of differences in pO(2) in response to perfluorocarbon carbogen in FSa and NFSa murine fibrosarcomas with low-frequency electron paramagnetic resonance oximetry. Radiat Res 145:610–618

    Article  CAS  PubMed  Google Scholar 

  14. Halpern HJ, Yu C, Peric M, Barth E, Grdina DJ, Teicher BA (1994) Oxymetry deep in tissues with low-frequency electron-paramagnetic resonance. Proc Natl Acad Sci U S A 91:13047–13051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Epel B, Halpern HJ (2015) Comparison of pulse sequences for R-1-based electron paramagnetic resonance oxygen imaging. J Magn Reson 254:56–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Martino F, Amici G, Rosner M, Ronco C, Novara G (2021) Gadolinium-based contrast media nephrotoxicity in kidney impairment: the physio-pathological conditions for the perfect murder. J Clin Med 10(2):271. https://doi.org/10.3390/jcm10020271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sherry AD, Caravan P, Lenkinski RE (2009) Primer on gadolinium chemistry. J Magn Reson Imaging 30:1240–1248

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ibrahim MA, Hazhirkarzar B, Dublin AB (2023) Gadolinium magnetic resonance imaging. In: StatPearls [Internet]. StatPearls Publishing, Treasure Island (FL). Available from: https://www.ncbi.nlm.nih.gov/books/NBK482487/

  19. Brigger I, Dubernet C, Couvreur P (2012) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 64:24–36

    Article  Google Scholar 

  20. Vong LB, Yoshitomi T, Matsui H, Nagasaki Y (2015) Development of an oral nanotherapeutics using redox nanoparticles for treatment of colitis-associated colon cancer. Biomaterials 55:54–63

    Article  CAS  PubMed  Google Scholar 

  21. Chen NT, Barth ED, Lee TH, Chen CT, Epel B, Halpern HJ et al (2019) Highly sensitive electron paramagnetic resonance nanoradicals for quantitative intracellular tumor oxymetric images. Int J Nanomedicine 14:2963–2971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang X, Peng C, He K, Ji K, Tan X, Han G et al (2020) Intracellular delivery of liposome-encapsulated Finland trityl radicals for EPR oximetry. Analyst 145:4964–4971

    Article  CAS  PubMed  Google Scholar 

  23. Nel J, Desmet CM, Driesschaert B, Saulnier P, Lemaire L, Gallez B (2019) Preparation and evaluation of trityl-loaded lipid nanocapsules as oxygen sensors for electron paramagnetic resonance oximetry. Int J Pharm 554:87–92

    Article  CAS  PubMed  Google Scholar 

  24. Kao JPY, Barth ED, Burks SR, Smithback P, Mailer C, Ahn KH et al (2007) Very-low-frequency electron paramagnetic resonance (EPR) Imaging of nitroxide-loaded cells. Magn Reson Med 58:850–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Burks SR, Barth ED, Halpern HJ, Rosen GM, Kao JPY (2009) Cellular uptake of electron paramagnetic resonance imaging probes through endocytosis of liposomes. Biochim Biophys Acta 1788:2301–2308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Callender RL, Harlan CJ, Shapiro NM, Jones CD, Callahan DL, Wiesner MR et al (1997) Aqueous synthesis of water-soluble alumoxanes: environmentally benign precursors to alumina and aluminum-based ceramics. Chem Mater 9:2418–2433

    Article  CAS  Google Scholar 

  27. Kareiva A, Harlan CJ, MacQueen DB, Cook RL, Barron AR (1996) Carboxylate-substituted alumoxanes as processable precursors to transition metal−aluminum and lanthanide−aluminum mixed-metal oxides: atomic scale mixing via a new transmetalation reaction. Chem Mater 8:2331–2340

    Article  CAS  Google Scholar 

  28. Harlan CJ, Kareiva A, MacQueen B, Cook R, Barror AR (1997) Yttrium-doped alumoxanes: a chimie douce route to Y3Al5O12(YAG) and Y4A12O9 (YAM). Adv Mater 9:68–71

    Article  CAS  Google Scholar 

  29. Driesschaert B, Levêque P, Gallez B, Marchand-Brynaert J (2014) Tetrathiatriarylmethyl radicals conjugated to an RGD-peptidomimetic. Eur J Org Chem 2014:8077–8084

    Article  CAS  Google Scholar 

  30. Dhimitruka I, Velayutham M, Bobko AA, Khramtsov VV, Villamena FA, Hadad CM et al (2007) Large-scale synthesis of a persistent trityl radical for use in biomedical EPR applications and imaging. Bioorg Med Chem Lett 17:6801–6805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nag S, Lehmann L, Kettschau G, Toth M, Heinrich T, Thiele A et al (2013) Development of a novel fluorine-18 labeled deuterated fluororasagiline ([18F]fluororasagiline-D2) radioligand for PET studies of monoamino oxidase B (MAO-B). Bioorg Med Chem 21:6634–6641

    Article  CAS  PubMed  Google Scholar 

  32. Srinivasan R, Uttamchandani M, Yao SQ (2006) Rapid assembly and in situ screening of bidentate inhibitors of protein tyrosine phosphatases. Org Lett 8:713–716

    Article  CAS  PubMed  Google Scholar 

  33. Poncelet M, Driesschaert B, Tseytlin O, Tseytlin M, Eubank TD, Khramtsov VV (2019) Dextran-conjugated tetrathiatriarylmethyl radicals as biocompatible spin probes for EPR spectroscopy and imaging. Bioorg Med Chem Lett 29:1756–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Biller JR, Martin RM (2022) Encapsulated alumoxane nanoparticle imaging agents for radiotherapy guidance in the clinic. Patent application #63/352.249, June 15th 2022. Under review.

  35. Ngendahimana T, Ayikpoe R, Latham JA, Eaton GR, Eaton SS (2019) Structural insights for vanadium catecholates and iron-sulfur clusters obtained from multiple data analysis methods applied to electron spin relaxation data. J Inorg Biochem 201:110806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Borgia GC, Brown RJS, Fantazzini P (2000) Uniform-penalty inversion of multiexponential decay data. J Magn Reson 147:273–285

    Article  CAS  PubMed  Google Scholar 

  37. Borgia GC, Brown RJS, Fantazzini P (1998) Uniform-penalty inversion of multiexponential decay data. J Magn Reson 132:65–77

    Article  CAS  PubMed  Google Scholar 

  38. Malvern Instruments (2023) Dynamic light scattering: an introduction in 30 minutes - technical note. Available: https://www.research.colostate.edu/wp-content/uploads/2018/11/dls-30min-explanation.pdf

  39. Yang Z, Bridge M, Lerch MT, Altenbach C, Hubbell WL (2015) Saturation recovery EPR and nitroxide spin labeling for exploring structure and dynamics in proteins. Methods Enzymol 564:3–27

    Article  CAS  PubMed  Google Scholar 

  40. Columbus L, Hubbell WL (2002) A new spin on protein dynamics. Trends Biochem Sci 27:288–295

    Article  CAS  PubMed  Google Scholar 

  41. Hyde JS, Yin JJ, Feix JB, Hubbellm WL (1990) Advances in spin label oximetry. Pure Appl Chem 62:255–260

    Article  CAS  Google Scholar 

  42. Biller JR, Meyer V, Elajaili H, Rosen GM, Kao JPY, Eaton SS et al (2011) Relaxation times and line widths of isotopically-substituted nitroxides in aqueous solution at X-band. J Magn Reson 212:370–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Stoll S, Schweiger A (2006) EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J Magn Reson 178:42–55

    Article  CAS  PubMed  Google Scholar 

  44. Etienne E, Le Breton N, Martinho M, Mileo E, Belle V (2017) SimLabel: a graphical user interface to simulate continuous wave EPR spectra from site-directed spin labeling experiments. Magn Reson Chem 55:714–719

    Article  CAS  PubMed  Google Scholar 

  45. Yong L, Harbridge J, Quine RW, Rinard GA, Eaton SS, Eaton GR et al (2001) Electron spin relaxation of triarylmethyl radicals in fluid solution. J Magn Reson 152:156–161

    Article  CAS  PubMed  Google Scholar 

  46. Owenius R, Eaton GR, Eaton SS (2005) Frequency (250 MHz to 9.2 GHz) and viscosity dependence of electron spin relaxation of triarylmethyl radicals at room temperature. J Magn Reson 172:168–175

    Article  CAS  PubMed  Google Scholar 

  47. Fielding AJ, Carl PJ, Eaton GR, Eaton SS (2005) Multifrequency EPR of four triarylmethyl radicals. Appl Magn Reson 28:231–238

    Article  CAS  Google Scholar 

  48. Song Y, Liu Y, Liu W, Villamena FA, Zweier JL (2014) Characterization of the binding of the Finland trityl radical with bovine serum albumin. RSC Adv 4:47649–47656

    Article  CAS  PubMed  Google Scholar 

  49. Biller JR, Elajaili H, Meyer V, Rosen GM, Eaton SS, Eaton GR (2013) Electron spin-lattice relaxation mechanisms of rapidly-tumbling nitroxide radicals. J Magn Reson 236:47–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Moore W, McPeak JE, Poncelet M, Driesschaert B, Eaton SS, Eaton GR (2020) 13C isotope enrichment of the central trityl carbon decreases fluid solution electron spin relaxation times. J Magn Reson 318:106797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kuzhelev A, Krumkacheva O, Timofeev I, Tormyshev V, Fedin M, Bagryanskaya EG (2018) Electron-spin relaxation of triarylmethyl radicals in glassy trehalose. Appl Magn Reson 49:1171–1180. https://doi.org/10.1007/s00723-018-1023-0

    Article  CAS  Google Scholar 

  52. Kmiec M, Tse D, Mast J, Ahmad R, Kuppusamy P (2019) Implantable microchip containing oxygen-sensing paramagnetic crystals for long-term, repeated, and multisite in vivo oximetry. Biomed Microdevices 21(3):71. https://doi.org/10.1007/s10544-019-0421-x

    Article  CAS  PubMed  Google Scholar 

  53. Hou H, Khan N, Gohain S, Kuppusamy ML, Kuppusamy P (2018) Pre-clinical evaluation of OxyChip for long-term EPR oximetry. Biomed Microdevices 20:29

    Article  PubMed  Google Scholar 

  54. U.S. National Library of Medicine (2023) Oxygen measurements in subcutaneous tumors by EPR oximetry using OxyChip. Identifier NCT02706197. https://clinicaltrials.gov/ct2/show/NCT02706197. Accessed 2023-10-06

Download references

Acknowledgements

We would like to thank Dr. Brian Gorman, Colorado School of Mines for help with the SEM of nanoparticles.

Funding

This work was funded under a National Cancer Institute (NCI) Small-Business-Innovation and Research (SBIR) Phase I Award (Contract #75N91010C00032 “Encapsulated Nanoparticle Oxygen Imaging Agents for Radiotherapy Guidance”, with TDA Research as the primary grant awardee and sub-contracts to WVU, DU and O2M Technologies, LLC. The alkyne-functionalized trityl (dFT) was synthesized by Dr. Driesschaert at West Virginia University (WVU), RADI-Sense imaging agent was synthesized at TDA Research Inc. under the direction of Dr. Biller. EPR measurements were performed at the University of Denver under Dr. Gareth Eaton. Mouse imaging comparisons between RADI-Sense and OX-071 were carried out under the direction of Dr. Kotecha, founder and CEO of O2M Technologies. All applicable institutional and/or national guidelines for the care and use of animals were followed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua R. Biller.

Ethics declarations

Conflict of Interest

Dr. Biller reports grants from National Cancer Institute, during the conduct of the study; In addition, Dr. Biller has patents “Encapsulated Nanoparticle Imaging Agents for Radiotherapy Guidance” 63/352249, filed 06/15/23 pending.

Dr. Kotecha reports other from TDA Research, Inc., during the conduct of the study; other from O2M Technologies, LLC, outside the submitted work.

Dr. Driesschaert reports grants from National Cancer Institute, during the conduct of the study.

Dr. Eaton reports grants from National Cancer Institute, during the conduct of the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, R.M., Diaz, S., Poncelet, M. et al. Toward a Nanoencapsulated EPR Imaging Agent for Clinical Use. Mol Imaging Biol (2023). https://doi.org/10.1007/s11307-023-01863-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11307-023-01863-0

Keywords

Navigation