Skip to main content

Advertisement

Log in

Evaluating Tumor Hypoxia Radiosensitization Via Electron Paramagnetic Resonance Oxygen Imaging (EPROI)

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Tumor hypoxia contributes to aggressive phenotypes and diminished therapeutic responses to radiation therapy (RT) with hypoxic tissue being 3-fold less radiosensitive than normoxic tissue. A major challenge in implementing hypoxic radiosensitizers is the lack of a high-resolution imaging modality that directly quantifies tissue-oxygen. The electron paramagnetic resonance oxygen-imager (EPROI) was used to quantify tumor oxygenation in two murine tumor models: E0771 syngeneic transplant breast cancers and primary p53/MCA soft tissue sarcomas, with the latter autochthonous model better recapitulating the tumor microenvironment in human malignancies. We hypothesized that tumor hypoxia differs between these models. We also aimed to quantify the absolute change in tumor hypoxia induced by the mitochondrial inhibitor papaverine (PPV) and its effect on RT response.

Procedures

Tumor oxygenation was characterized in E0771 and primary p53/MCA sarcomas via EPROI, with the former model also being quantified indirectly via diffuse reflectance spectroscopy (DRS). After confirming PPV’s effect on hypoxic fraction (via EPROI), we compared the effect of 0 versus 2 mg/kg PPV prior to 20 Gy on tumor growth delay and survival.

Results

Hypoxic sarcomas were more radioresistant than normoxic sarcomas (p=0.0057, 2-way ANOVA), and high baseline hypoxic fraction was a significant (p=0.0063, Cox Regression Model) hazard in survivability regardless of treatment. Pre-treatment with PPV before RT did not radiosensitize tumors in the sarcoma or E0771 model. In the sarcoma model, EPROI successfully identified baseline hypoxic tumors. DRS quantification of total hemoglobin, saturated hemoglobin, changes in mitochondrial potential and glucose uptake showed no significant difference in E0771 tumors pre- and post-PPV.

Conclusion

EPROI provides 3D high-resolution pO2 quantification; EPR is better suited than DRS to characterize tumor hypoxia. PPV did not radiosensitize E0771 tumors nor p53/MCA sarcomas, which may be related to the complex pattern of vasculature in each tumor. Additionally, understanding model-dependent tumor hypoxia will provide a much-needed foundation for future therapeutic studies with hypoxic radiosensitizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Research data are stored in an institutional repository and will be shared upon request to the corresponding authors.

References

  1. Vaupel P, Mayer A (2007) Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev 26(2):225–239

    Article  CAS  PubMed  Google Scholar 

  2. Moon EJ, Brizel DM, Chi JT, Dewhirst MW (2007) The potential role of intrinsic hypoxia markers as prognostic variables in cancer. Antioxid Redox Signal 9(8):1237–1294

    Article  CAS  PubMed  Google Scholar 

  3. Churchill-Davidson I (1964) High-pressure oxygen and radiotherapy. Anglo Ger Med Rev 2:519–523

    CAS  PubMed  Google Scholar 

  4. Saunders M, Dische S (1996) Clinical results of hypoxic cell radiosensitisation from hyperbaric oxygen to accelerated radiotherapy, carbogen and nicotinamide. Br J Cancer Suppl 27:S271–S278

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wardman P (2019) Nitroimidazoles as hypoxic cell radiosensitizers and hypoxia probes: misonidazole, myths and mistakes. Br J Radiol 92(1093):20170915

    PubMed  Google Scholar 

  6. Marcu L, Olver I (2006) Tirapazamine: from bench to clinical trials. Curr Clin Pharmacol 1(1):71–79

    Article  CAS  PubMed  Google Scholar 

  7. Rockwell S, Dobrucki IT, Kim EY, Marrison ST, Vu VT (2009) Hypoxia and radiation therapy: past history, ongoing research, and future promise. Curr Mol Med 9(4):442–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Koch CJ, Evans SM (2015) Optimizing hypoxia detection and treatment strategies. Semin Nucl Med 45(2):163–176

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rickard AG, Palmer GM, Dewhirst MW (2019) Clinical and pre-clinical methods for quantifying tumor hypoxia. Adv Exp Med Biol 1136:19–41

    Article  CAS  PubMed  Google Scholar 

  10. Bonnitcha P, Grieve S, Figtree G (2018) Clinical imaging of hypoxia: current status and future directions. Free Radic Biol Med 126:296–312

    Article  CAS  PubMed  Google Scholar 

  11. Overgaard J, Horsman MR (1996) Modification of hypoxia-induced radioresistance in tumors by the use of oxygen and sensitizers. Semin Radiat Oncol 6(1):10–21

    Article  CAS  PubMed  Google Scholar 

  12. Epel B, Bowman MK, Mailer C, Halpern HJ (2014) Absolute oxygen r1e imaging in vivo with pulse electron paramagnetic resonance. Magn Reson Med 72(2):362–368

    Article  PubMed  Google Scholar 

  13. Epel B, Redler G, Halpern HJ (2014) How in vivo epr measures and images oxygen. Adv Exp Med Biol 812:113–119

    Article  PubMed  PubMed Central  Google Scholar 

  14. Viswakarma N, Siddiqui E, Patel S, Hameed S, Schreiber W, Swartz HM, Epel B, Kotecha M (2022) In vivo partial oxygen pressure assessment in subcutaneous and intraperitoneal sites using imaging of solid oxygen probe. Tissue Eng Part C Methods 28(6):264–271

    Article  CAS  PubMed  Google Scholar 

  15. Kotecha M, Epel B, Ravindran S, Dorcemus D, Nukavarapu S, Halpern H (2018) Noninvasive absolute electron paramagnetic resonance oxygen imaging for the assessment of tissue graft oxygenation. Tissue Eng Part C Methods 24(1):14–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Epel B, Haney CR, Hleihel D, Wardrip C, Barth ED, Halpern HJ (2010) Electron paramagnetic resonance oxygen imaging of a rabbit tumor using localized spin probe delivery. Med Phys 37(6):2553–2559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gallez B, Baudelet C, Jordan BF (2004) Assessment of tumor oxygenation by electron paramagnetic resonance: principles and applications. NMR Biomed 17(5):240–262

    Article  CAS  PubMed  Google Scholar 

  18. Subramanian S, Matsumoto K, Mitchell JB, Krishna MC (2004) Radio frequency continuous-wave and time-domain epr imaging and overhauser-enhanced magnetic resonance imaging of small animals: instrumental developments and comparison of relative merits for functional imaging. NMR Biomed 17(5):263–294

    Article  CAS  PubMed  Google Scholar 

  19. Ilangovan G, Li H, Zweier JL, Kuppusamy P (2002) In vivo measurement of tumor redox environment using epr spectroscopy. Mol Cell Biochem 234-235(1-2):393–398

    Article  PubMed  Google Scholar 

  20. Elas M, Bell R, Hleihel D, Barth ED, McFaul C, Haney CR, Bielanska J, Pustelny K, Ahn KH, Pelizzari CA et al (2008) Electron paramagnetic resonance oxygen image hypoxic fraction plus radiation dose strongly correlates with tumor cure in fsa fibrosarcomas. Int J Radiat Oncol Biol Phys 71(2):542–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Redler G, Epel B, Halpern HJ (2014) What we learn from in vivo epr oxygen images. Adv Exp Med Biol 812:121–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Epel B, Maggio M, Pelizzari C, Halpern HJ (2017) Electron paramagnetic resonance po2 image tumor oxygen-guided radiation therapy optimization. Adv Exp Med Biol 977:287–296

    Article  CAS  PubMed  Google Scholar 

  23. Epel B, Krzykawska-Serda M, Tormyshev V, Maggio MC, Barth ED, Pelizzari CA, Halpern HJ (2017) Spin lattice relaxation epr po2 images may direct the location of radiation tumor boosts to enhance tumor cure. Cell Biochem Biophys 75(3-4):295–298

    Article  CAS  PubMed  Google Scholar 

  24. Epel B, Kotecha M, Halpern HJ (2017) In vivo preclinical cancer and tissue engineering applications of absolute oxygen imaging using pulse epr. J Magn Reson 280:149–157

    Article  CAS  PubMed  Google Scholar 

  25. Benej M, Hong X, Vibhute S, Scott S, Wu J, Graves E, Le QT, Koong AC, Giaccia AJ, Yu B et al (2018) Papaverine and its derivatives radiosensitize solid tumors by inhibiting mitochondrial metabolism. Proc Natl Acad Sci U S A 115(42):10756–10761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Palmer GM, Zhang H, Lee CT, Mikati H, Herbert JA, Krieger M, von Windheim J, Koester D, Stevenson D, Rocke DJ et al (2018) Assessing effects of pressure on tumor and normal tissue physiology using an automated self-calibrated, pressure-sensing probe for diffuse reflectance spectroscopy. J Biomed Opt 23(5):1–8

    Article  PubMed  Google Scholar 

  27. Lee CL, Mowery YM, Daniel AR, Zhang D, Sibley AB, Delaney JR, Wisdom AJ, Qin X, Wang X, Caraballo I et al (2019) Mutational landscape in genetically engineered, carcinogen-induced, and radiation-induced mouse sarcoma. JCI Insight 4(13)

  28. Wang LH, Ernst AU, An D, Datta AK, Epel B, Kotecha M, Ma M (2021) A bioinspired scaffold for rapid oxygenation of cell encapsulation systems. Nat Commun 12(1):5846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lu W, Miao R, Hu S, Liu J, Jin F, Zhang RX (2021) Microsurgical skills of establishing permanent jugular vein cannulation in rats for serial blood sampling of orally administered drug. J Vis Exp 178

  30. Wisdom AJ, Mowery YM, Hong CS, Himes JE, Nabet BY, Qin X, Zhang D, Chen L, Fradin H, Patel R et al (2020) Single cell analysis reveals distinct immune landscapes in transplant and primary sarcomas that determine response or resistance to immunotherapy. Nat Commun 11(1):6410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Garrett ER, Roseboom H, Green JR Jr, Schuermann W (1978) Pharmacokinetics of papaverine hydrochloride and the biopharmaceutics of its oral dosage forms. Int J Clin Pharmacol Biopharm 16(5):193–208

    CAS  PubMed  Google Scholar 

  32. Ritschel WA, Hammer GV (1977) Pharmacokinetics of papaverine in man. Int J Clin Pharmacol Biopharm 15(5):227–228

    CAS  PubMed  Google Scholar 

  33. Guerin MV, Finisguerra V, Van den Eynde BJ, Bercovici N, Trautmann A (2020) Preclinical murine tumor models: a structural and functional perspective. Elife 9

  34. Folkman J, Hanahan D (1991) Switch to the angiogenic phenotype during tumorigenesis. Princess Takamatsu Symp 22:339–347

    CAS  PubMed  Google Scholar 

  35. Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 86(3):353–364

    Article  CAS  PubMed  Google Scholar 

  36. Wood S Jr (1958) Pathogenesis of metastasis formation observed in vivo in the rabbit ear chamber. AMA Arch Pathol 66(4):550–568

    PubMed  Google Scholar 

  37. Dewhirst MW (2009) Relationships between cycling hypoxia, hif-1, angiogenesis and oxidative stress. Radiat Res 172(6):653–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Baronzio G, Parmar G, Baronzio M (2015) Overview of methods for overcoming hindrance to drug delivery to tumors, with special attention to tumor interstitial fluid. Front Oncol 5:165

    Article  PubMed  PubMed Central  Google Scholar 

  39. Dou S, Smith M, Wang Y, Rusckowski M, Liu G (2013) Intraperitoneal injection is not always a suitable alternative to intravenous injection for radiotherapy. Cancer Biother Radiopharm 28(4):335–342

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Subhan MA, Yalamarty SSK, Filipczak N, Parveen F, Torchilin VP (2021) Recent advances in tumor targeting via EPR effect for cancer treatment. J Pers Med 11(6)

  41. Sharma A, Arambula JF, Koo S, Kumar R, Singh H, Sessler JL, Kim JS (2019) Hypoxia-targeted drug delivery. Chem Soc Rev 48(3):771–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dewhirst MW, Birer SR (2016) Oxygen-enhanced mri is a major advance in tumor hypoxia imaging. Cancer Res 76(4):769–772

    Article  CAS  PubMed  Google Scholar 

  43. Gérard M, Corroyer-Dulmont A, Lesueur P, Collet S, Chérel M, Bourgeois M, Stefan D, Limkin EJ, Perrio C, Guillamo JS et al (2019) Hypoxia imaging and adaptive radiotherapy: a state-of-the-art approach in the management of glioma. Front Med-Lausanne 6

  44. Epel B, Redler G, Pelizzari C, Tormyshev VM, Halpern HJ (2016) Approaching oxygen-guided intensity-modulated radiation therapy. Oxygen Transport to Tissue Xxxvii 876:185–193

    Article  CAS  Google Scholar 

  45. Epel B, Maggio M, Pelizzari C, Halpern HJ (2017) Electron paramagnetic resonance po(2) image tumor oxygen-guided radiation therapy optimization. Oxygen Transport to Tissue Xxxix 977:287–296

    Article  CAS  Google Scholar 

  46. Epel B, Maggio MC, Barth ED, Miller RC, Pelizzari CA, Krzykawska-Serda M, Sundramoorthy SV, Aydogan B, Weichselbaum RR, Tormyshev VM et al (2019) Oxygen-guided radiation therapy. Int J Radiat Oncol 103(4):977–984

    Article  Google Scholar 

  47. Constantinides C, Mean R, Janssen BJ (2011) Effects of isoflurane anesthesia on the cardiovascular function of the c57bl/6 mouse. ILAR J 52(3):e21–e31

    PubMed  Google Scholar 

  48. Rickard AG, Zhuang M, DeRosa CA, Dewhirst MW, Fraser CL, Palmer GM (2022) Quantifying the effects of anesthesia on intracellular oxygen via low-cost portable microscopy using dual-emissive nanoparticles. Biomed Opt Express 13(7):3869–3881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang J, Wang H, Suo W, Li Z, Yang C (2021) Penetration enhancing of an erythrocyte-mimicking nanoplatform via papaverine for radiosensitization. Int J Nanomedicine 16:6923–6935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jordan BF, Sonveaux P (2012) Targeting tumor perfusion and oxygenation to improve the outcome of anticancer therapy. Front Pharmacol 3:94

    Article  PubMed  PubMed Central  Google Scholar 

  51. Boucher Y, Leunig M, Jain RK (1996) Tumor angiogenesis and interstitial hypertension. Cancer Res 56(18):4264–4266

    CAS  PubMed  Google Scholar 

  52. McDonald DM, Baluk P (2002) Significance of blood vessel leakiness in cancer. Cancer Res 62(18):5381–5385

    CAS  PubMed  Google Scholar 

  53. Munn LL (2003) Aberrant vascular architecture in tumors and its importance in drug-based therapies. Drug Discov Today 8(9):396–403

    Article  PubMed  Google Scholar 

  54. Naghavi AO, Yang GQ, Latifi K, Gillies R, McLeod H, Harrison LB (2018) The future of radiation oncology in soft tissue sarcoma. Cancer Control 25

  55. Ortiz-Prado E, Dunn JF, Vasconez J, Castillo D, Viscor G (2019) Partial pressure of oxygen in the human body: a general review. Am J Blood Res 9(1):1–14

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Ketan Ghaghada, PhD (Texas Children’s Hospital) for providing liposomal iodine and protocols for cone-beam computed tomography acquisition. We also thank O2M team members, Eliyas Siddiqui, and University of Chicago’s senior technician Eugene Barth for their support with EPROI experiment training and data processing.

Funding

This work is funded by the O2M Technologies and National Institutes of Health (NCI R44CA224840, PI: Kotecha; NCI R41OD026688, PI: Ramanujam). YMM received support from a K08 Award from National Institute of Dental and Craniofacial Research (K08-DE029887). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

YMM, BE, MK, and GMP contributed to the conception and design of the experiment. AGR, YMM, AB, NTW, TC, RB, SB, and RC acquired and analyzed animal data. AGR and GMP were responsible for the statistical analyses. BE provided oversight in EPROI acquisition and analysis. DCR trained and oversaw jugular vein cannulation. BC, NR, DS, and GMP oversaw and analyzed DRS data. All authors contributed to the final manuscript.

Corresponding authors

Correspondence to Yvonne M. Mowery, Mrignayani Kotecha or Gregory M. Palmer.

Ethics declarations

Conflict of Interest

GMP, BC, NR, DS, and Duke University have financial interest in Zenalux Biomedical, Inc. which is commercializing the Zenascope. BE and MK have financial interest in O2M Technologies, LLC. All other authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 15 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rickard, .G., Mowery, Y.M., Bassil, A. et al. Evaluating Tumor Hypoxia Radiosensitization Via Electron Paramagnetic Resonance Oxygen Imaging (EPROI). Mol Imaging Biol (2023). https://doi.org/10.1007/s11307-023-01855-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11307-023-01855-0

Keywords

Navigation