Skip to main content

Advertisement

Log in

PET Imaging of VLA-4 in a New BRAFV600E Mouse Model of Melanoma

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Despite unprecedented responses to immune checkpoint inhibitors and targeted therapy in melanoma, a major subset of patients progresses and have few effective salvage options. We have previously demonstrated robust, selective uptake of the peptidomimetic LLP2A labeled with Cu-64 ([64Cu]-LLP2A) for positron emission tomography (PET) imaging in subcutaneous and metastatic models of B16F10 murine melanoma. LLP2A binds with high affinity to very late antigen-4 (VLA-4, integrin α4β1), a transmembrane protein overexpressed in melanoma and other cancers that facilitates tumor growth and metastasis. Yet B16F10 fails to faithfully reflect human melanoma biology, as it lacks certain oncogenic driver mutations, including BRAF mutations found in ≥ 50 % of clinical specimens. Here, we evaluated the PET tracer [64Cu]-CB-TE1A1P-PEG4-LLP2A ([64Cu]-LLP2A) in novel, translational BRAFV600E mutant melanoma models differing in VLA-4 expression—BPR (VLA-4) and BPRα (VLA-4+).

Procedures

BPR cells were transduced with α4 (CD49d) to overexpress intact cell surface VLA-4 (BPRα). The binding affinity of [64Cu]-LLP2A to BPR and BPRα cells was determined by saturation binding assays. [64Cu]-LLP2A internalization into B16F10, BPR, and BPRα cells was quantified via a plate-based assay. Tracer biodistribution and PET/CT imaging were evaluated in mice bearing subcutaneous BPR and BPRα tumors.

Results

[64Cu]-LLP2A demonstrated high binding affinity to BPRα (Kd = 1.4 nM) but indeterminate binding to BPR cells. VLA-4+ BPRα and B16F10 displayed comparable time-dependent [64Cu]-LLP2A internalization, whereas BPR internalization was undetectable. PET/CT showed increased tracer uptake in BPRα tumors vs. BPR tumors in vivo, which was validated by significantly greater (p < 0.0001) BPRα tumor uptake in biodistribution analyses.

Conclusions

[64Cu]-LLP2A discriminates BPRα (VLA-4+) vs. BPR (VLA-4) melanomas in vivo, supporting translation of these BRAF-mutated melanoma models via prospective imaging and theranostic studies. These results extend the utility of LLP2A to selectively target clinically relevant and therapy-resistant tumor variants toward its use for therapeutic patient care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. Larkin J et al (2019) Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med 381(16):1535–1546

    Article  CAS  PubMed  Google Scholar 

  2. Hodi FS et al (2016) Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial. Lancet Oncol 17(11):1558–1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Postow MA et al (2015) Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med 372(21):2006–2017

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ascierto PA et al (2012) The role of BRAF V600 mutation in melanoma. J Transl Med 10:85–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Flaherty KT et al (2012) Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med 367(18):1694–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dummer R et al (2018) Overall survival in patients with BRAF-mutant melanoma receiving encorafenib plus binimetinib versus vemurafenib or encorafenib (COLUMBUS): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol 19(10):1315–1327

    Article  CAS  PubMed  Google Scholar 

  7. Dummer R et al (2018) Encorafenib plus binimetinib versus vemurafenib or encorafenib in patients with BRAF-mutant melanoma (COLUMBUS): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol 19(5):603–615

    Article  CAS  PubMed  Google Scholar 

  8. Long GV et al (2016) Overall survival and durable responses in patients with BRAF V600-mutant metastatic melanoma receiving dabrafenib combined with trametinib. J Clin Oncol 34(8):871–878

    Article  CAS  PubMed  Google Scholar 

  9. Wolchok JD et al (2017) Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med 377(14):1345–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ribas A et al (2015) Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial. Lancet Oncol 16(8):908–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Robert C et al (2019) Pembrolizumab versus ipilimumab in advanced melanoma (KEYNOTE-006): post-hoc 5-year results from an open-label, multicentre, randomised, controlled, phase 3 study. Lancet Oncol 20(9):1239–1251

    Article  CAS  PubMed  Google Scholar 

  12. Holzmann B, Gosslar U, Bittner M (1998) Alpha 4 integrins and tumor metastasis. Curr Top Microbiol Immunol 231:125–141

    CAS  PubMed  Google Scholar 

  13. Miyake K et al (1992) Requirement for VLA-4 and VLA-5 integrins in lymphoma cells binding to and migration beneath stromal cells in culture. J Cell Biol 119(3):653–662

    Article  CAS  PubMed  Google Scholar 

  14. Schadendorf D et al (1995) Association with clinical outcome of expression of VLA-4 in primary cutaneous malignant melanoma as well as P-selectin and E-selectin on intratumoral vessels. J Natl Cancer Inst 87(5):366–371

    Article  CAS  PubMed  Google Scholar 

  15. Kuphal S, Bauer R, Bosserhoff A-K (2005) Integrin signaling in malignant melanoma. Cancer Metastasis Rev 24(2):195–222

    Article  CAS  PubMed  Google Scholar 

  16. Hyun Y-M et al (2009) Activated integrin VLA-4 localizes to the lamellipodia and mediates T cell migration on VCAM-1. J Immunol 183(1):359–369

    Article  CAS  PubMed  Google Scholar 

  17. Yednock TA et al (1992) Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin. Nature 356(6364):63–66

    Article  CAS  PubMed  Google Scholar 

  18. Halpert G et al (2014) Multifunctional activity of a small tellurium redox immunomodulator compound, AS101, on dextran sodium sulfate-induced murine colitis. J Biol Chem 289(24):17215–17227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Peng L et al (2006) Combinatorial chemistry identifies high-affinity peptidomimetics against alpha4beta1 integrin for in vivo tumor imaging. Nat Chem Biol 2(7):381–389

    Article  CAS  PubMed  Google Scholar 

  20. Beaino W, Anderson CJ (2014) PET imaging of very late antigen-4 in melanoma: comparison of 68Ga- and 64Cu-labeled NODAGA and CB-TE1A1P-LLP2A conjugates. J Nucl Med 55(11):1856–1863

    Article  CAS  PubMed  Google Scholar 

  21. Beaino W, Nedrow JR, Anderson CJ (2015) Evaluation of (68)Ga- and (177)Lu-DOTA-PEG4-LLP2A for VLA-4-targeted PET imaging and treatment of metastatic melanoma. Mol Pharm 12(6):1929–1938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Choi J et al (2018) Combined VLA-4–targeted radionuclide therapy and immunotherapy in a mouse model of melanoma. J Nucl Med 59(12):1843–1849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Melnikova VO et al (2004) Genomic alterations in spontaneous and carcinogen-induced murine melanoma cell lines. Oncogene 23(13):2347–2356

    Article  CAS  PubMed  Google Scholar 

  24. Bastian BC et al (1998) Chromosomal gains and losses in primary cutaneous melanomas detected by comparative genomic hybridization. Cancer Res 58(10):2170–2175

    CAS  PubMed  Google Scholar 

  25. Cooper ZA et al (2014) Response to BRAF inhibition in melanoma is enhanced when combined with immune checkpoint blockade. Cancer Immunol Res 2(7):643–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Close DA, et al (2020) Unbiased high-throughput drug combination pilot screening identifies synergistic drug combinations effective against patient-derived and drug-resistant melanoma cell lines. SLAS Discov 2472555220970917

  27. Mattila JT et al (2017) Positron emission tomography imaging of macaques with tuberculosis identifies temporal changes in granuloma glucose metabolism and integrin α4β1–expressing immune cells. J Immunol 199(2):806–815

    Article  CAS  PubMed  Google Scholar 

  28. Grubbs FE (1969) Procedures for detecting outlying observations in samples. Technometrics 11(1):1–21

    Article  Google Scholar 

  29. Higgins HW et al (2015) Melanoma in situ: Part II. Histopathology, treatment, and clinical management. J Am Acad Dermatol 73(2):193–203

    Article  PubMed  Google Scholar 

  30. Hughes LD, Rawle RJ, Boxer SG (2014) Choose your label wisely: water-soluble fluorophores often interact with lipid bilayers. PLOS ONE 9(2):e87649

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Kuzu OF et al (2015) Current state of animal (mouse) modeling in melanoma research. Cancer Growth Metastasis 8(Suppl 1):81–94

    PubMed  PubMed Central  Google Scholar 

  32. Dankort D et al (2009) Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nat Genet 41(5):544–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tomasi G, Rosso L (2012) PET imaging: implications for the future of therapy monitoring with PET/CT in oncology. Curr Opin Pharmacol 12(5):569–575

    Article  CAS  PubMed  Google Scholar 

  34. Krug B et al (2008) Role of PET in the initial staging of cutaneous malignant melanoma: systematic review. Radiology 249(3):836–844

    Article  PubMed  Google Scholar 

  35. Choi EA, Gershenwald JE (2007) Imaging studies in patients with melanoma. Surg Oncol Clin N Am 16(2):403–430

    Article  PubMed  Google Scholar 

  36. Larcos G, Maisey MN (1996) FDG-PET screening for cerebral metastases in patients with suspected malignancy. Nucl Med Commun 17(3):197–198

    Article  CAS  PubMed  Google Scholar 

  37. Strobel K et al (2007) High-risk melanoma: accuracy of FDG PET/CT with added CT morphologic information for detection of metastases. Radiology 244(2):566–574

    Article  PubMed  Google Scholar 

  38. Wong ANM et al (2017) The advantages and challenges of using FDG PET/CT for response assessment in melanoma in the era of targeted agents and immunotherapy. Eur J Nucl Med Mol Imaging 44(1):67–77

    Article  PubMed  Google Scholar 

  39. Pyo A et al (2020) Ultrasensitive detection of malignant melanoma using PET molecular imaging probes. Proc Natl Acad Sci 117(23):12991–12999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xu X et al (2017) Synthesis and preclinical evaluation of (18)F-PEG(3)-FPN for the detection of metastatic pigmented melanoma. Mol Pharm 14(11):3896–3905

    Article  CAS  PubMed  Google Scholar 

  41. Garg PK et al (2017) 4-(11)C-Methoxy N-(2-diethylaminoethyl) benzamide: a novel probe to selectively target melanoma. J Nucl Med 58(5):827–832

    Article  CAS  PubMed  Google Scholar 

  42. Vāvere AL et al (2012) 64Cu-NH2-Bn-DOTA-hu14.18K322A, a PET radiotracer targeting neuroblastoma and melanoma. J Nucl Med 53(11):1772–1778

    Article  PubMed  CAS  Google Scholar 

  43. Voss SD et al (2007) Positron emission tomography (PET) imaging of neuroblastoma and melanoma with 64Cu-SarAr immunoconjugates. Proc Natl Acad Sci U S A 104(44):17489–17493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Norain A, Dadachova E (2016) Targeted radionuclide therapy of melanoma. Semin Nucl Med 46(3):250–259

    Article  PubMed  Google Scholar 

  45. Klemke M et al (2007) High affinity interaction of integrin alpha4beta1 (VLA-4) and vascular cell adhesion molecule 1 (VCAM-1) enhances migration of human melanoma cells across activated endothelial cell layers. J Cell Physiol 212(2):368–374

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Susan Rottinghaus and the Cell and Immunobiology Core at the University of Missouri for technical assistance. Figure 1a was created with BioRender.com.

Funding

This work was funded by K08 CA241319 and R01 CA214018. This work utilized the Hillman Cancer Center In Vivo Imaging Facility, a shared resource at the University of Pittsburgh supported by the CCSG P30 CA047904. RP received support from the Hillman Cancer Center Early Career Fellowship for Innovative Cancer Research.

Author information

Authors and Affiliations

Authors

Contributions

MB and LN: Research design, data acquisition and analysis, drafting and revising the paper. JL, K-VH, RF, and JT: Data acquisition and analysis. KD, MP, FG, and SN: Data acquisition. K-VH, RSE, WS, RP, and CJA: Research design and revising the paper.

Corresponding authors

Correspondence to Ravi B. Patel or Carolyn J. Anderson.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Michael C. Bellavia and Lea Nyiranshuti contributed equally to this work.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 444 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bellavia, M.C., Nyiranshuti, L., Latoche, J.D. et al. PET Imaging of VLA-4 in a New BRAFV600E Mouse Model of Melanoma. Mol Imaging Biol 24, 425–433 (2022). https://doi.org/10.1007/s11307-021-01666-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-021-01666-1

Key words

Navigation