Skip to main content

Advertisement

Log in

Transcranial Photoacoustic Detection of Blood-Brain Barrier Disruption Following Focused Ultrasound-Mediated Nanoparticle Delivery

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Blood-brain barrier disruption (BBBD) is of interest for treating neurodegenerative diseases and tumors by enhancing drug delivery. Focused ultrasound (FUS) is a powerful method to alleviate BBB challenges; however, the detection of BBB opening by non-invasive methods remains limited. The purpose of this work is to demonstrate that 3D transcranial color Doppler (3DCD) and photoacoustic imaging (PAI) combined with custom-made nanoparticle (NP)-mediated FUS delivery can detect BBBD in mice.

Procedures

We use MRI and stereotactic ultrasound-mediated BBBD to create and confirm four openings in the left hemisphere and inject intravenously indocyanine green (ICG) and three sizes (40 nm, 100 nm, and 240 nm in diameter) of fluorophore-labeled NPs. We use PAI and fluorescent imaging (FI) to assess the spatial distribution of ICG/NPs in tissues.

Results

A reversible 41 ± 12 % (n = 8) decrease in diameter of the left posterior cerebral artery (PCA) relative to the right after FUS treatment is found using CD images. The spectral unmixing of photoacoustic images of the in vivo (2 h post FUS), perfused, and ex vivo brain reveals a consistent distribution pattern of ICG and NPs at *FUS locations. Ex vivo spectrally unmixed photoacoustic images show that the opening width is, on average, 1.18 ± 0.12 mm and spread laterally 0.49 ± 0.05 mm which correlated well with the BBB opening locations on MR images. In vivo PAI confirms a deposit of NPs in tissues for hours and potentially days, is less sensitive to NPs of lower absorbance at a depth greater than 3 mm and too noisy with NPs above an absorbance of 85.4. FI correlates well with ex vivo PAI to a depth of 3 mm in tissues for small NPs and 4.74 mm for large NPs.

Conclusions

3DCD can monitor BBBD over time by detecting reversible anatomical changes in the PCA. In vivo 3DPAI at 15 MHz combined with circulating ICG and/or NPs with suitable properties can assess BBB opening 2 h post FUS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gonzales-Portillo GS, Sanberg PR, Franzblau M, Gonzales-Portillo C, Diamandis T, Staples M, Sanberg CD, Borlongan CV (2014) Mannitol-enhanced delivery of stem cells and their growth factors across the blood-brain barrier. Cell Transplant 23:531–539

    Article  Google Scholar 

  2. Lee HJ, Zhang Y, Pardridge WM (2002) Blood-brain barrier disruption following the internal carotid arterial perfusion of alkyl glycerols. J Drug Target 10:463–467

    Article  CAS  Google Scholar 

  3. Black KL, Cloughesy T, Huang S-C, Gobin YP, Zhou Y, Grous J, Nelson G, Farahani K, Hoh CK, Phelps M (1997) Intracarotid infusion of RMP-7, a bradykinin analog, and transport of gallium-68 ethylenediamine tetraacetic acid into human gliomas. J Neurosurg 86:603–609

    Article  CAS  Google Scholar 

  4. Costantino HR, Illum L, Brandt G, Johnson PH, Quay SC (2007) Intranasal delivery: physicochemical and therapeutic aspects. Int J Pharm 337:1–24

    Article  CAS  Google Scholar 

  5. Lochhead JJ, Thorne RG (2012) Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev 64:614–628

    Article  CAS  Google Scholar 

  6. Goldsmith M, Abramovitz L, Peer D (2014) Precision nanomedicine in neurodegenerative diseases. ACS Nano 8:1958–1965

    Article  CAS  Google Scholar 

  7. Patel T, Zhou J, Piepmeier JM, Saltzman WM (2012) Polymeric nanoparticles for drug delivery to the central nervous system. Adv Drug Deliv Rev 64:701–705

    Article  CAS  Google Scholar 

  8. Kreuter J (2014) Drug delivery to the central nervous system by polymeric nanoparticles: what do we know? Adv Drug Deliv Rev 71:2–14

    Article  CAS  Google Scholar 

  9. Stockwell J, Abdi N, Lu X, Maheshwari O, Taghibiglou C (2014) Novel central nervous system drug delivery systems. Chem Biol Drug Des 83:507–520

    Article  CAS  Google Scholar 

  10. Saraiva C, Praça C, Ferreira R, Santos T, Ferreira L, Bernardino L (2016) Nanoparticle-mediated brain drug delivery: overcoming blood-brain barrier to treat neurodegenerative diseases. J Control Release 235:34–47

    Article  CAS  Google Scholar 

  11. Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA (2001) Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology 220:640–646

    Article  CAS  Google Scholar 

  12. O’Reilly MA, Hynynen K (2012) Ultrasound enhanced drug delivery to the brain and central nervous system. Int J Hyperth 28:386–396

    Article  Google Scholar 

  13. Miller DB, O’Callaghan JP (2017) New horizons for focused ultrasound (FUS) – therapeutic applications in neurodegenerative diseases. Metabolism 69:S3–S7

    Article  CAS  Google Scholar 

  14. Park E-J, Zhang Y-Z, Vykhodtseva N, McDannold N (2012) Ultrasound-mediated blood-brain/blood-tumor barrier disruption improves outcomes with trastuzumab in a breast cancer brain metastasis model. J Control Release 163:277–284

    Article  CAS  Google Scholar 

  15. Park J, Aryal M, Vykhodtseva N, Zhang YZ, McDannold N (2017) Evaluation of permeability, doxorubicin delivery, and drug retention in a rat brain tumor model after ultrasound-induced blood-tumor barrier disruption. J Control Release 250:77–85

    Article  CAS  Google Scholar 

  16. Cho EE, Drazic J, Ganguly M, Stefanovic B, Hynynen K (2011) Two-photon fluorescence microscopy study of cerebrovascular dynamics in ultrasound-induced blood-brain barrier opening. J Cereb Blood Flow Metab 31:1852–1862

    Article  Google Scholar 

  17. Burgess A, Nhan T, Moffatt C, Klibanov AL, Hynynen K (2014) Analysis of focused ultrasound-induced blood-brain barrier permeability in a mouse model of Alzheimer’s disease using two-photon microscopy. J Control Release 192:243–248

    Article  CAS  Google Scholar 

  18. Zhao Y-J, Yu T-T, Zhang C, Li Z, Luo QM, Xu TH, Zhu D (2018) Skull optical clearing window for in vivo imaging of the mouse cortex at synaptic resolution. Light Sci Appl 7:17153

    Article  CAS  Google Scholar 

  19. Feng W, Zhang C, Yu T, et al (2018) In vivo monitoring blood-brain barrier permeability using spectral imaging through optical clearing skull window. J Biophotonics

  20. Wu SY, Sanchez CS, Samiotaki G, Buch A, Ferrera VP, Konofagou EE (2016) Characterizing focused-ultrasound mediated drug delivery to the heterogeneous primate brain in vivo with acoustic monitoring. Sci Rep. https://doi.org/10.1038/srep37094

  21. Wu SY, Aurup C, Sanchez CS, Grondin J, Zheng W, Kamimura H, Ferrera VP, Konofagou EE (2018) Efficient blood-brain barrier opening in primates with neuronavigation-guided ultrasound and real-time acoustic mapping. Sci Rep. https://doi.org/10.1038/s41598-018-25904-9

  22. Wang P-H, Liu H-L, Hsu P-H, Lin CY, Chris Wang CR, Chen PY, Wei KC, Yen TC, Li ML (2012) Gold-nanorod contrast-enhanced photoacoustic micro-imaging of focused-ultrasound induced blood-brain-barrier opening in a rat model. J Biomed Opt 17:61222

    Article  Google Scholar 

  23. Lu HD, Wilson BK, Heinmiller A, Faenza B, Hejazi S, Prud’homme RK (2016) Narrow absorption NIR wavelength organic nanoparticles enable multiplexed photoacoustic imaging. ACS Appl Mater Interfaces 8:14379–14388

    Article  Google Scholar 

  24. Needles A, Heinmiller A, Sun J, Theodoropoulos C, Bates D, Hirson D, Yin M, Foster FS (2013) Development and initial application of a fully integrated photoacoustic micro-ultrasound system. IEEE Trans Ultrason Ferroelectr Freq Control 60:888–897

    Article  Google Scholar 

  25. Luke GP, Nam SY, Emelianov SY (2013) Optical wavelength selection for improved spectroscopic photoacoustic imaging. Photoacoustics 1:36–42

    Article  Google Scholar 

  26. Hynynen K, McDannold N, Sheikov NA, Jolesz FA, Vykhodtseva N (2005) Local and reversible blood–brain barrier disruption by noninvasive focused ultrasound at frequencies suitable for trans-skull sonications. Neuroimage 24:12–20

    Article  Google Scholar 

  27. Lee S, Lim W, Ryu HW, Jo D, Min JJ, Kim HS, Hyun H (2017) ZW800-1 for assessment of blood-brain barrier disruption in a photothrombotic stroke model. Int J Med Sci 14:1430–1435

    Article  CAS  Google Scholar 

  28. Razansky D, Buehler A, Ntziachristos V (2011) Volumetric real-time multispectral optoacoustic tomography of biomarkers. Nat Protoc 6:1121–1129

    Article  CAS  Google Scholar 

  29. Kim C, Cho EC, Chen J, Song KH, Au L, Favazza C, Zhang Q, Cobley CM, Gao F, Xia Y, Wang LV (2010) In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages. ACS Nano 4:4559–4564

    Article  CAS  Google Scholar 

  30. Lu W, Huang Q, Ku G, Wen X, Zhou M, Guzatov D, Brecht P, Su R, Oraevsky A, Wang LV, Li C (2010) Photoacoustic imaging of living mouse brain vasculature using hollow gold nanospheres. Biomaterials 31:2617–2626

    Article  CAS  Google Scholar 

  31. Pan D, Pramanik M, Senpan A, Allen JS, Zhang H, Wickline SA, Wang LV, Lanza GM (2011) Molecular photoacoustic imaging of angiogenesis with integrin-targeted gold nanobeacons. FASEB J 25:875–882

    Article  CAS  Google Scholar 

  32. Chen Y-S, Frey W, Kim S, Homan K, Kruizinga P, Sokolov K, Emelianov S (2010) Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy. Opt Express 18:8867

    Article  CAS  Google Scholar 

  33. Pansare VJ, Hejazi S, Faenza WJ, Prud’Homme RK (2012) Review of long-wavelength optical and NIR imaging materials: contrast agents, fluorophores, and multifunctional nano carriers. Chem Mater 24:812–827

    Article  CAS  Google Scholar 

  34. De la Zerda A, Zavaleta C, Keren S et al (2008) Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat Nanotechnol 3:557–562

    Article  Google Scholar 

  35. Mallidi S, Larson T, Tam J, Joshi PP, Karpiouk A, Sokolov K, Emelianov S (2009) Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer. Nano Lett 9:2825–2831

    Article  CAS  Google Scholar 

  36. Beziere N, Lozano N, Nunes A, Salichs J, Queiros D, Kostarelos K, Ntziachristos V (2015) Dynamic imaging of PEGylated indocyanine green (ICG) liposomes within the tumor microenvironment using multi-spectral optoacoustic tomography (MSOT). Biomaterials 37:415–424

    Article  CAS  Google Scholar 

  37. Proulx ST, Luciani P, Derzsi S, Rinderknecht M, Mumprecht V, Leroux JC, Detmar M (2010) Quantitative imaging of lymphatic function with liposomal indocyanine green. Cancer Res 70:7053–7062

    Article  CAS  Google Scholar 

  38. Jeong HS, Lee CM, Cheong SJ, Kim EM, Hwang H, Na KS, Lim ST, Sohn MH, Jeong HJ (2013) The effect of mannosylation of liposome-encapsulated indocyanine green on imaging of sentinel lymph node. J Liposome Res 23:291–297

    Article  CAS  Google Scholar 

  39. Cook JR, Frey W, Emelianov S (2013) Quantitative photoacoustic imaging of nanoparticles in cells and tissues. ACS Nano 7:1272–1280

    Article  CAS  Google Scholar 

  40. Lu HD, Lim TL, Javitt S, Heinmiller A, Prud’homme RK (2017) Assembly of macrocycle dye derivatives into particles for fluorescence and photoacoustic applications. ACS Comb Sci 19:397–406

    Article  CAS  Google Scholar 

  41. Lu HD, Wilson BK, Lim TL, Heinmiller A, Prud’homme RK (2017) Real-time and multiplexed photoacoustic imaging of internally normalized mixed-targeted nanoparticles. ACS Biomater Sci Eng 3:443–451

    Article  CAS  Google Scholar 

  42. D’Addio SM, Saad W, Ansell SM et al (2012) Effects of block copolymer properties on nanocarrier protection from in vivo clearance. J Control Release 162:208–217. https://doi.org/10.1016/j.jconrel.2012.06.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tang C, Edelstein J, Mikitsh JL, Xiao E, Hemphill AH, Pagels R, Chacko AM, Prud’homme R (2016) Biodistribution and fate of core-labeled125I polymeric nanocarriers prepared by Flash NanoPrecipitation (FNP). J Mater Chem B 4:2428–2434. https://doi.org/10.1039/c5tb02172c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Yin, Rideout-Gros, and Nghiem for their help with animal care, So for histology, Mikloska and Seerala for MRI, and FUS and Heinmiller for PAI.

Funding

JLF and FSF were funded by TFRI under grant number 1022 and CIHR grant FDN148367. RKP was funded by Princeton SEAS Blaire/Pyne and Old Guard. KH was funded by NIH under grant number R01-EB003268 and CRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johann Le Floc’h.

Ethics declarations

Conflict of Interest

FSF consults for and receives grant funding from Fujifilm VisualSonics Inc.

Ethical Statement

All experimental procedures were approved by the Animal Care Committee at Sunnybrook Research Institute, University of Toronto.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 284 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Floc’h, J., Lu, H.D., Lim, T.L. et al. Transcranial Photoacoustic Detection of Blood-Brain Barrier Disruption Following Focused Ultrasound-Mediated Nanoparticle Delivery. Mol Imaging Biol 22, 324–334 (2020). https://doi.org/10.1007/s11307-019-01397-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-019-01397-4

Key words

Navigation