Skip to main content

Advertisement

Log in

Evaluation of l-1-[18F]Fluoroethyl-Tryptophan for PET Imaging of Cancer

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Fluorine-18 labeled tryptophan analog l-1-[18F]fluoroethyl-tryptophan (l-1-[18F]FETrp) was designed for positron emission tomography (PET) imaging of cancer by dual targeting of the overexpressed amino acid transporters and altered indoleamine 2,3-dioxygenase (IDO)-mediated kynurenine pathway of tryptophan metabolism. In our previous study, we described the radiosynthesis and preliminary evaluation of l-1-[18F]FETrp for PET imaging of breast cancer. The aim of this study was to investigate the in vivo imaging mechanism and further evaluate this radiotracer in more wide range types of cancers including prostate cancer, lung cancer, and glioma.

Procedures

The mice bearing subcutaneous PC-3 prostate cancer, subcutaneous H2009 and H460 lung cancers, subcutaneous MDA-MB-231, orthotopic A549 lung cancer, and intracranial 73C glioma were employed to evaluate l-1-[18F]FETrp for PET imaging of cancer. The in vivo catabolism of l-1-[18F]FETrp in the tumor was studied by analysis of PC-3 extracts with radio-HPLC.

Results

Small animal PET/CT imaging of l-1-[18F]FETrp visualized all tumors in these different mouse models with high accumulations of radioactivity in PC-3 (7.5 ± 0.6 % ID/g), H2009 (5.3 ± 0.8 % ID/g), H460 (9.0 ± 1.4 % ID/g), A549 (4.5 ± 0.5 % ID/g), and 73C (4.1 ± 0.7 % ID/g) tumors. The radio-HPLC analysis of PC-3 tumor extracts revealed that about 30 % of l-1-[18F]FETrp was converted into a highly polar radioactive metabolite. The uptake in H460 cancer was about 1.7-fold higher than that in H2009 cancer, which indicated l-1-[18F]FETrp could differentiate these subtypes of lung cancers (H2009 and H460) by imaging quantification. Furthermore, small animal PET/CT imaging in intracranial glioma revealed l-1-[18F]FETrp could pass blood-brain barrier (BBB) and accumulate in glioma with a favorable imaging contrast (tumor-to-brain 2.9).

Conclusions

l-1-[18F]FETrp highly accumulated in a wide range of malignancies including lung cancer, prostate cancer, and glioma. These results suggested that l-1-[18F]FETrp is a promising radiotracer for PET imaging of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Vécsei L, Szalárdy L, Fülöp F, Toldi J (2013) Kynurenines in the CNS: recent advances and new questions. Nat Rev Drug Discov 12:64–82

    Article  PubMed  Google Scholar 

  2. Dounay AB, Tuttle JB, Verhoest PR (2015) Challenges and opportunities in the discovery of new therapeutics targeting the kynurenine pathway. J Med Chem 58:8762–8782

    Article  CAS  PubMed  Google Scholar 

  3. Plathow C, Weber WA (2008) Tumor cell metabolism imaging. J Nucl Med 49:43S–63S

    Article  CAS  PubMed  Google Scholar 

  4. Karanikas V, Zamanakou M, Kerenidi T, Dahabreh J, Hevas A, Nakou M, Gourgoulianis KI, Germenis AE (2007) Indoleamine 2,3-dioxygenase (IDO) expression in lung cancer. Cancer Biol Ther 6:1258–1262

    Article  CAS  PubMed  Google Scholar 

  5. Uyttenhove C, Pilotte L, Théate I, Stroobant V, Colau D, Parmentier N, Boon T, van den Eynde BJ (2003) Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med 9:1269–1274

    Article  CAS  PubMed  Google Scholar 

  6. Astigiano S, Morandi B, Costa R, Mastracci L, D'Agostino A, Ratto GB, Melioli G, Frumento G (2005) Eosinophil granulocytes account for indoleamine 2,3-dioxygenase-mediated immune escape in human non-small cell lung cancer. Neoplasia 7:390–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Moon YW, Hajjar J, Hwu P, Naing A (2015) Targeting the indoleamine 2,3-dioxygenase pathway in cancer. J Immunother Cancer 3:51

    Article  PubMed  PubMed Central  Google Scholar 

  8. Brochez L, Chevolet I, Kruse V (2017) The rationale of indoleamine 2,3-dioxygenase inhibition for cancer therapy. Eur J Cancer 76:167–182

    Article  CAS  PubMed  Google Scholar 

  9. Perez RP, Riese MJ, Lewis KD, Saleh MN, Adil Daud JB (2017) Epacadostat plus nivolumab in patients with advanced solid tumors: preliminary phase I/II results of ECHO-204 [ASCO abstract 3003]. J Clin Oncol 35:3003–3003

    Article  Google Scholar 

  10. Zakharia Y, McWilliams R, Shaheen M, Grossman K, Drabick J, Milhem M, Rixie O, Khleif S, Lott R, Kennedy E, David Munn NV, CL (2017) Interim analysis of the phase 2 clinical trial of the IDO pathway inhibitor indoximod in combination with pembrolizumab for patients with advanced melanoma. [AACR abstract CT117]. Cancer Res 77(13 Suppl):AM2017–ACT117

    Google Scholar 

  11. Platten M, von Knebel Doeberitz N, Oezen I et al (2015) Cancer immunotherapy by targeting IDO1/TDO and their downstream effectors. Front Immunol 5:1–7

    Article  Google Scholar 

  12. Godin-Ethier J, Hanafi LA, Piccirillo CA, Lapointe R (2011) Indoleamine 2,3-dioxygenase expression in human cancers: clinical and immunologic perspectives. Clin Cancer Res 17:6985–6991

    Article  CAS  PubMed  Google Scholar 

  13. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    CAS  PubMed  Google Scholar 

  14. Juhász C, Muzik O, Lu X et al (2009) Quantification of tryptophan transport and metabolism in lung tumors using PET. J Nucl Med 50:356–363

    Article  PubMed  Google Scholar 

  15. Huang X, Xiao X, Gillies RJ, Tian H (2016) Design and automated production of 11C-alpha-methyl-l-tryptophan (11C-AMT). Nucl Med Biol 43:303–308

    Article  CAS  PubMed  Google Scholar 

  16. Xin Y, Cai H (2017) Improved radiosynthesis and biological evaluations of L- and D-1-[18F]fluoroethyl-tryptophan for PET imaging of IDO-mediated kynurenine pathway of tryptophan metabolism. Mol Imaging Biol 19:589–598

    Article  CAS  PubMed  Google Scholar 

  17. Michelhaugh SK, Muzik O, Guastella AR, Klinger NV, Polin LA, Cai H, Xin Y, Mangner TJ, Zhang S, Juhász C, Mittal S (2017) Assessment of tryptophan uptake and kinetics using 1-(2- 18 F-fluoroethyl)-l-tryptophan and α- 11 C-methyl-l-tryptophan PET imaging in mice implanted with patient-derived brain tumor xenografts. J Nucl Med 58:208–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Henrottin J, Lemaire C, Egrise D, Zervosen A, Van den Eynde B, Plenevaux A, Franci X, Goldman S, Andr’Luxen E, Luxen A, Jean Henrottin CL et al (2016) Fully automated radiosynthesis of 1-[18F]FETrp, a potential substrate for indoleamine 2,3-dioxygenase PET imaging. Nucl Med Biol 43:379–389

    Article  CAS  PubMed  Google Scholar 

  19. Sun T, Tang G, Tian H, Wang X, Chen X, Chen Z, Wang SC (2012) Radiosynthesis of 1-[18F]fluoroethyl-L-tryptophan as a novel potential amino acid PET tracer. Appl Radiat Isot 70:676–680

    Article  CAS  PubMed  Google Scholar 

  20. Kramer SD, Mu L, Muller A, Keller C, Kuznetsova OF, Schweinsberg C, Franck D, Muller C, Ross TL, Schibli R, Ametamey SM (2012) 5-(2-18F-fluoroethoxy)-L-tryptophan as a substrate of system L transport for tumor imaging by PET. J Nucl Med 53:434–442

    Article  CAS  PubMed  Google Scholar 

  21. Chiotellis A, Mu A, Ro SL et al (2016) Synthesis, radiolabeling, and biological evaluation of 5-hydroxy- 2-[18F]fluoroalkyl-tryptophan analogues as potential PET radiotracers for tumor imaging. J Med Chem 59:5324–5340

    Article  CAS  PubMed  Google Scholar 

  22. Zlatopolskiy BD, Zischler J, Urusova EA et al (2018) Discovery of 7-[18 F]fluorotryptophan as a novel positron emission tomography (PET) probe for the visualization of tryptophan metabolism in vivo. J Med Chem 61:189–206

    Article  CAS  PubMed  Google Scholar 

  23. Henrottin J, Zervosen A, Lemaire C, Sapunaric F, Laurent S, van den Eynde B, Goldman S, Plenevaux A, Luxen A (2015) N1-fluoroalkyltryptophan analogues: synthesis and in vitro study as potential substrates for indoleamine 2,3-dioxygenase. ACS Med Chem Lett 6:260–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Park GM, Lee S-M, Yim J-J, Yang S-C, Yoo CG, Lee C-T, Han SK, Young-Soo Shim YWK (2009) Expression of COX-2 and IDO by uteroglobin transduction in NSCLC cell lines transduction in NSCLC cell lines. Tuberc Respir Dis (Seoul) 66:274–279

    Article  Google Scholar 

  25. Kudo Y, Boyd CAR (2000) Human placental indoleamine 2,3-dioxygenase: cellular localization and characterization of an enzyme preventing fetal rejection. Biochim Biophys Acta - Mol Basis Dis 1500:119–124

    Article  CAS  Google Scholar 

  26. Bach-Gansmo T, Nanni C, Nieh PT, Zanoni L, Bogsrud TV, Sletten H, Korsan KA, Kieboom J, Tade FI, Odewole O, Chau A, Ward P, Goodman MM, Fanti S, Schuster DM, Willoch F (2017) Multisite experience of the safety, detection rate and diagnostic performance of fluciclovine (18F) positron emission tomography/computerized tomography imaging in the staging of biochemically recurrent prostate Cancer. J Urol 197:676–683

    Article  PubMed  Google Scholar 

  27. Jha GG, Gupta S, Tagawa ST, Koopmeiners JS, Vivek S, Dudek AZ, Cooley SA, Blazar BR, JSM (2017) A phase II randomized, double-blind study of sipuleucel-T followed by IDO pathway inhibitor, indoximod, or placebo in the treatment of patients with metastatic castration resistant prostate cancer (mCRPC). J Clin Oncol 35:3066–3066

    Article  Google Scholar 

  28. Masonic Cancer Center, University of Minnesota. Phase II Study of Sipuleucel-T and Indoximod for Patients With Refractory Metastatic Prostate Cancer. Available from: https://clinicaltrials.gov/ct2/show/NCT01560923. NLM identifier: NCT01560923. Accessed 21 Feb 2019

  29. Wang Q, Holst J (2015) L-type amino acid transport and cancer: targeting the mTORC1 pathway to inhibit neoplasia. Am J Cancer Res 5:1281–1294

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Fuchs BC, Bode BP (2005) Amino acid transporters ASCT2 and LAT1 in cancer: partners in crime? Semin Cancer Biol 15:254–266

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. Xiankai Sun and Dr. Aditi Mulgaonkar in UTSW for providing scientific insights and experimental supports. We also would like to thank Robert Hallgren in UTSW for producing [18F]F ion used in radiotracer synthesis.

Funding

This work was financially supported by the UT Southwestern Simmons Cancer Center Grant (NIH 5P30 CA 142543), the American Cancer Society and the Simmons Cancer Center (ACS-IRG-02-196), the UT Southwestern High Impact/High Risk funds, NINDS K99/R00 (R00NS073735), the Jonesville Foundation and CRI start-up funds to W.P.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hancheng Cai.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 279 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, Y., Gao, X., Liu, L. et al. Evaluation of l-1-[18F]Fluoroethyl-Tryptophan for PET Imaging of Cancer. Mol Imaging Biol 21, 1138–1146 (2019). https://doi.org/10.1007/s11307-019-01327-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-019-01327-4

Key Words

Navigation