Skip to main content

Advertisement

Log in

Study of Vesicular Monoamine Transporter 2 in Myopic Retina Using [18F]FP-(+)-DTBZ

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the relationship between expression level of vesicular monoamine transporter 2 (VMAT2) and myopia, as well as the feasibility of noninvasive myopia diagnosis through imaging VMAT2 in retina by using [18F]fluoropropyl-(+)-dihydrotetrabenazine ([18F]FP-(+)-DTBZ).

Procedures

The right eyes of ten guinea pigs were deprived of vision to establish form-deprived (FD) myopia and the left eyes were untreated as the self-control eyes. The location and expression level of VMAT2 in the eyes were detected by micro-positron emission tomography (PET)/X-ray computed tomography (CT) imaging through using [18F]FP-(+)-DTBZ. Immunofluorescence staining and Western blot were used to confirm the location and expression level of VMAT2 in the eyes. The concentrations of dopamine (DA) and its metabolites including 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were also investigated by high-performance liquid chromatography.

Results

The right eyes deprived of vision were obviously myopic (− 3.17 ± 1.33 D) after procedure, while the left eyes were hyperopic (4.60 ± 0.83 D, P < 0.0001). The main expressions of VMAT2 in the eyes were located in retina. VMAT2 was significantly reduced in the myopic retina compared to the normal one from PET/CT results (P = 0.0008), which could also be verified by Western blots (P = 0.029). The concentrations of DA, DOPAC, and HVA in the FD eyes were all significantly less than those in the control eyes (P = 0.024, P = 0.018, P = 0.008). As a role of storing and releasing DA in vesicles, VMAT2 was demonstrated positively correlating with the amounts of DA (P = 0.030), DOPAC (P = 0.038), and HVA (P = 0.025) through Pearson’s correlation coefficient test.

Conclusions

We demonstrate that [18F]FP-(+)-DTBZ can be used to noninvasively image VMAT2 in retina. The expression level of VMAT2 in retina may act as a new biomarker for myopia diagnosis. The decreasing of VMAT2 expression level may play an important role in the development of myopia through correspondingly reducing the amount of DA in retina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Leo SW, Young TL (2011) An evidence-based update on myopia and interventions to retard its progression. J AAPOS 15:181–189

    Article  PubMed  PubMed Central  Google Scholar 

  2. Feldkaemper M, Schaeffel F (2013) An updated view on the role of dopamine in myopia. Exp Eye Res 114:106–119

    Article  PubMed  CAS  Google Scholar 

  3. Duchemin AM, Zhang H, Neff NH, Hadjiconstantinou M (2009) Increased expression of VMAT2 in dopaminergic neurons during nicotine withdrawal. Neurosci Lett 467:182–186

    Article  PubMed  CAS  Google Scholar 

  4. German CL, Baladi MG, McFadden LM et al (2015) Regulation of the dopamine and vesicular monoamine transporters: pharmacological targets and implications for disease. Pharmacol Rev 67:1005–1024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Lohr KM, Bernstein AI, Stout KA, Dunn AR, Lazo CR, Alter SP, Wang M, Li Y, Fan X, Hess EJ, Yi H, Vecchio LM, Goldstein DS, Guillot TS, Salahpour A, Miller GW (2014) Increased vesicular monoamine transporter enhances dopamine release and opposes Parkinson disease-related neurodegeneration in vivo. Proc Nat Acad Sci (USA) 111:9977–9982

    Article  CAS  Google Scholar 

  6. Witkovsky P, Veisenberger E, Haycock JW, Akopian A, Garcia-Espana A, Meller E (2004) Activity-dependent phosphorylation of tyrosine hydroxylase in dopaminergic neurons of the rat retina. J Neurosci 24:4242–4249

    Article  PubMed  CAS  Google Scholar 

  7. Burger S, Doring B, Hardt M et al (2011) Co-expression studies of the orphan carrier protein Slc10a4 and the vesicular carriers VAChT and VMAT2 in the rat central and peripheral nervous system. Neuroscience 193:109–121

    Article  PubMed  CAS  Google Scholar 

  8. Murthy R, Harris P, Simpson N, van Heertum R, Leibel R, Mann JJ, Parsey R (2008) Whole body [11C]-dihydrotetrabenazine imaging of baboons: biodistribution and human radiation dosimetry estimates. Eur J Nucl Med Mol Imaging 35:790–797

    Article  PubMed  CAS  Google Scholar 

  9. Vander Borght TM, Kilbourn MR, Koeppe RA, DaSilva J, Carey JE, Kuhl DE, Frey KA (1995) In vivo imaging of the brain vesicular monoamine transporter. J Nucl Med 36:2252–2260

    PubMed  CAS  Google Scholar 

  10. Hsiao IT, Weng YH, Hsieh CJ, Lin WY, Wey SP, Kung MP, Yen TC, Lu CS, Lin KJ (2014) Correlation of Parkinson disease severity and 18F-DTBZ positron emission tomography. JAMA Neurol 71:758–766

    Article  PubMed  Google Scholar 

  11. Wood H (2014) Parkinson disease: 18F-DTBZ PET tracks dopaminergic degeneration in patients with Parkinson disease. Nat Rev Neurol 10:305

    Article  PubMed  Google Scholar 

  12. Kung MP, Hou C, Goswami R, Ponde DE, Kilbourn MR, Kung HF (2007) Characterization of optically resolved 9-fluoropropyl-dihydrotetrabenazine as a potential PET imaging agent targeting vesicular monoamine transporters. Nucl Med Biol 34:239–246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Wang WF, Ishiwata K, Kiyosawa M, Kawamura K, Oda K, Kobayashi T, Matsuno K, Mochizuki M (2002) Visualization of sigma1 receptors in eyes by ex vivo autoradiography and in vivo positron emission tomography. Exp Eye Res 75:723–730

    Article  PubMed  CAS  Google Scholar 

  14. McCarthy CS, Megaw P, Devadas M, Morgan IG (2007) Dopaminergic agents affect the ability of brief periods of normal vision to prevent form-deprivation myopia. Exp Eye Res 84:100–107

    Article  PubMed  CAS  Google Scholar 

  15. Dong F, Zhi Z, Pan M, Xie R, Qin X, Lu R, Mao X, Chen JF, Willcox MD, Qu J, Zhou X (2011) Inhibition of experimental myopia by a dopamine agonist: different effectiveness between form deprivation and hyperopic defocus in guinea pigs. Mol Vis 17:2824–2834

    PubMed  PubMed Central  CAS  Google Scholar 

  16. McBrien NA, Cottriall CL, Annies R (2001) Retinal acetylcholine content in normal and myopic eyes: a role in ocular growth control? Vis Neurosci 18:571–580

    Article  PubMed  CAS  Google Scholar 

  17. Mao J, Liu S, Qin W, Li F, Wu X, Tan Q (2010) Levodopa inhibits the development of form-deprivation myopia in guinea pigs. Optom Vis Sci 87:53–60

    Article  PubMed  Google Scholar 

  18. Huang F, Yan T, Shi F, An J, Xie R, Zheng F, Li Y, Chen J, Qu J, Zhou X (2014) Activation of dopamine D2 receptor is critical for the development of form-deprivation myopia in the C57BL/6 mouse. Invest Ophthalmol Vis Sci 55:5537–5544

    Article  PubMed  CAS  Google Scholar 

  19. Zhao J, Qu X, Qi Y, Zhou W, Liu X (2010) Study on retinal dopamine transporter in form deprivation myopia using the radiopharmaceutical tracer 99mTc-TRODAT-1. Nucl Med Commun 31:910–915

    PubMed  CAS  Google Scholar 

  20. Chen MK, Kuwabara H, Zhou Y, Adams RJ, Brašić JR, McGlothan JL, Verina T, Burton NC, Alexander M, Kumar A, Wong DF, Guilarte TR (2008) VMAT2 and dopamine neuron loss in a primate model of Parkinson’s disease. J Neurochem 105:78–90

    Article  PubMed  CAS  Google Scholar 

  21. Cui D, Trier K, Zeng J, Wu K, Yu M, Ge J (2010) Adenosine receptor protein changes in guinea pigs with form deprivation myopia. Acta Ophthalmol 88:759–765

    Article  PubMed  CAS  Google Scholar 

  22. Li B, Luo X, Li T, Zheng C, Ji S, Ma Y, Zhang S, Zhou X (2016) Effects of constant flickering light on refractive status, 5-HT and 5-HT2A receptor in Guinea pigs. PLoS One 11:e0167902

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Li M, Yuan Y, Chen Q, Me R, Gu Q, Yu Y, Sheng M, Ke B (2016) Expression of Wnt/beta-catenin signaling pathway and its regulatory role in type I collagen with TGF-beta1 in scleral fibroblasts from an experimentally induced myopia guinea pig model. J Ophthalmol 2016:5126560, 1, 10

  24. Wang Q, Xue ML, Zhao GQ, Liu MG, Ma YN, Ma Y (2015) Form-deprivation myopia induces decreased expression of bone morphogenetic protein-2, 5 in guinea pig sclera. Int J Ophthalmol 8:39–45

    PubMed  PubMed Central  CAS  Google Scholar 

  25. Park H, Tan CC, Faulkner A, Jabbar SB, Schmid G, Abey J, Iuvone PM, Pardue MT (2013) Retinal degeneration increases susceptibility to myopia in mice. Mol Vis 19:2068–2079

    PubMed  PubMed Central  CAS  Google Scholar 

  26. Lambert GW, Eisenhofer G, Jennings GL, Esler MD (1993) Regional homovanillic acid production in humans. Life Sci 53:63–75

    Article  PubMed  CAS  Google Scholar 

  27. Espino A, Ambrosio S, Bartrons R, Bendahan G, Calopa M (1994) Cerebrospinal monoamine metabolites and amino acid content in patients with parkinsonian syndrome and rats lesioned with MPP+. J Neural Transm Park Dis Dement Sect 7:167–176

    Article  PubMed  CAS  Google Scholar 

  28. Kalia LV, Lang AE (2015) Parkinson’s disease. Lancet 386:896–912

    Article  PubMed  CAS  Google Scholar 

  29. Herbert MK, Kuiperij H, Bloem BR, Verbeek MM (2013) Levels of HVA, 5-HIAA, and MHPG in the CSF of vascular parkinsonism compared to Parkinson’s disease and controls. J Neurol 260:3129–3133

    Article  PubMed  CAS  Google Scholar 

  30. Luo X, Li B, Li T, di Y, Zheng C, Ji S, Ma Y, Zhu J, Chen X, Zhou X (2017) Myopia induced by flickering light in guinea pig eyes is associated with increased rather than decreased dopamine release. Mol Vis 23:666–679

    PubMed  PubMed Central  CAS  Google Scholar 

  31. Penthala NR, Ponugoti PR, Nickell JR, Deaciuc AG, Dwoskin LP, Crooks PA (2013) Pyrrolidine analogs of GZ-793A: synthesis and evaluation as inhibitors of the vesicular monoamine transporter-2 (VMAT2). Bioorg Med Chem Lett 23:3342–3345

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Ding D, Nickell JR, Dwoskin LP, Crooks PA (2015) Quinolyl analogues of norlobelane: novel potent inhibitors of [3H]dihydrotetrabenazine binding and [3H]dopamine uptake at the vesicular monoamine transporter-2. Bioorg Med Chem Lett 25:2613–2616

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Jinhui Dai from Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China.

Funding

This work was supported by National Natural Science Foundation of China (Grant 81571706).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen Cheng or Xingdang Liu.

Ethics declarations

All experiment procedures were approved by the Administrative Panel on Laboratory Animal Care (APALC) at Huashan Hospital, Fudan University.

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

ESM 1

(PDF 694 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Zhao, N., Liu, W. et al. Study of Vesicular Monoamine Transporter 2 in Myopic Retina Using [18F]FP-(+)-DTBZ. Mol Imaging Biol 20, 771–779 (2018). https://doi.org/10.1007/s11307-018-1183-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-018-1183-1

Key words

Navigation