Skip to main content

Advertisement

Log in

Comparative Study of Tumor Targeting and Biodistribution of pH (Low) Insertion Peptides (pHLIP® Peptides) Conjugated with Different Fluorescent Dyes

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Acidification of extracellular space promotes tumor development, progression, and invasiveness. pH (low) insertion peptides (pHLIP® peptides) belong to the class of pH-sensitive membrane peptides, which target acidic tumors and deliver imaging and/or therapeutic agents to cancer cells within tumors.

Procedures

Ex vivo fluorescent imaging of tissue and organs collected at various time points after administration of different pHLIP® variants conjugated with fluorescent dyes of various polarity was performed. Methods of multivariate statistical analyses were employed to establish classification between fluorescently labeled pHLIP® variants in multidimensional space of spectral parameters.

Results

The fluorescently labeled pHLIP® variants were classified based on their biodistribution profile and ability of targeting of primary tumors. Also, submillimeter-sized metastatic lesions in lungs were identified by ex vivo imaging after intravenous administration of fluorescent pHLIP® peptide.

Conclusions

Different cargo molecules conjugated with pHLIP® peptides can alter biodistribution and tumor targeting. The obtained knowledge is essential for the design of novel pHLIP®-based diagnostic and therapeutic agents targeting primary tumors and metastatic lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. Damaghi M, Wojtkowiak JW, Gillies RJ (2013) pH sensing and regulation in cancer. Front Physiol 4:370

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gatenby RA, Gawlinski ET, Gmitro AF et al (2006) Acid-mediated tumor invasion: a multidisciplinary study. Cancer Res 66:5216–23

    Article  CAS  PubMed  Google Scholar 

  3. Gatenby RA, Smallbone K, Maini PK et al (2007) Cellular adaptations to hypoxia and acidosis during somatic evolution of breast cancer. Br J Cancer 97:646–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hashim AI, Zhang X, Wojtkowiak JW et al (2011) Imaging pH and metastasis. NMR Biomed 24:582–91

    PubMed  PubMed Central  Google Scholar 

  5. Chiche J, Brahimi-Horn MC, Pouyssegur J (2010) Tumour hypoxia induces a metabolic shift causing acidosis: a common feature in cancer. J Cell Mol Med 14:771–94

    Article  CAS  PubMed  Google Scholar 

  6. Parks SK, Chiche J, Pouyssegur J (2013) Disrupting proton dynamics and energy metabolism for cancer therapy. Nat Rev Cancer 13:611–23

    Article  CAS  PubMed  Google Scholar 

  7. Andreev OA, Engelman DM, Reshetnyak YK (2010) pH-sensitive membrane peptides (pHLIPs) as a novel class of delivery agents. Mol Membr Biol 27:341–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Andreev OA, Engelman DM, Reshetnyak YK (2014) Targeting diseased tissues by pHLIP insertion at low cell surface pH. Front Physiol 5:97

    Article  PubMed  PubMed Central  Google Scholar 

  9. Andreev OA, Engelman DM, Reshetnyak YK (2009) Targeting acidic diseased tissue: new technology based on use of the pH (low) insertion peptide (pHLIP). Chim Oggi 27:34–7

    PubMed  PubMed Central  Google Scholar 

  10. Weerakkody D, Moshnikova A, Thakur MS et al (2013) Family of pH (low) insertion peptides for tumor targeting. Proc Natl Acad Sci U S A 110:5834–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Karabadzhak AG, Weerakkody D, Wijesinghe D et al (2012) Modulation of the pHLIP transmembrane helix insertion pathway. Biophys J 102:1846–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Andreev OA, Karabadzhak AG, Weerakkody D et al (2010) pH (low) insertion peptide (pHLIP) inserts across a lipid bilayer as a helix and exits by a different path. Proc Natl Acad Sci U S A 107:4081–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Reshetnyak YK, Segala M, Andreev OA, Engelman DM (2007) A monomeric membrane peptide that lives in three worlds: in solution, attached to, and inserted across lipid bilayers. Biophys J 93:2363–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Reshetnyak YK, Andreev OA, Segala M et al (2008) Energetics of peptide (pHLIP) binding to and folding across a lipid bilayer membrane. Proc Natl Acad Sci U S A 105:15340–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vavere AL, Biddlecombe GB, Spees WM et al (2009) A novel technology for the imaging of acidic prostate tumors by positron emission tomography. Cancer Res 69:4510–6

    Article  CAS  PubMed  Google Scholar 

  16. Karabadzhak AG, An M, Yao L et al (2014) pHLIP-FIRE, a cell insertion-triggered fluorescent probe for imaging tumors demonstrates targeted cargo delivery in vivo. ACS Chem Biol 9:2545–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Daumar P, Wanger-Baumann CA, Pillarsetty N et al (2012) Efficient (18)F-labeling of large 37-amino-acid pHLIP peptide analogues and their biological evaluation. Bioconjug Chem 23:1557–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cheng CJ, Bahal R, Babar IA et al (2015) MicroRNA silencing for cancer therapy targeted to the tumour microenvironment. Nature 518:107–10

    Article  CAS  PubMed  Google Scholar 

  19. Cruz-Monserrate Z, Roland CL, Deng D et al (2014) Targeting pancreatic ductal adenocarcinoma acidic microenvironment. Sci Rep 4:4410

    Article  PubMed  PubMed Central  Google Scholar 

  20. Adochite RC, Moshnikova A, Carlin SD et al (2014) Targeting breast tumors with pH (low) insertion peptides. Mol Pharm 11:2896–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tapmeier TT, Moshnikova A, Beech J et al (2015) The pH low insertion peptide pHLIP Variant 3 as a novel marker of acidic malignant lesions. Proc Natl Acad Sci U S A 112:9710–5

    Article  CAS  PubMed  Google Scholar 

  22. Reshetnyak YK, Yao L, Zheng S et al (2011) Measuring tumor aggressiveness and targeting metastatic lesions with fluorescent pHLIP. Mol Imaging Biol 13:1146–56

    Article  PubMed  PubMed Central  Google Scholar 

  23. Loja MN, Luo Z, Greg Farwell D et al (2013) Optical molecular imaging detects changes in extracellular pH with the development of head and neck cancer. Int J Cancer 132:1613–23

    Article  CAS  PubMed  Google Scholar 

  24. Luo Z, Loja MN, Farwell DG et al (2014) Widefield optical imaging of changes in uptake of glucose and tissue extracellular pH in head and neck cancer. Cancer Prev Res (Phila) 7:1035–44

    Article  CAS  Google Scholar 

  25. Macholl S, Morrison MS, Iveson P et al (2012) In vivo pH imaging with (99m)Tc-pHLIP. Mol Imaging Biol 14:725–34

    Article  PubMed  PubMed Central  Google Scholar 

  26. Viola-Villegas NT, Carlin SD, Ackerstaff E et al (2014) Understanding the pharmacological properties of a metabolic PET tracer in prostate cancer. Proc Natl Acad Sci U S A 111:7254–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fox J, Weisberg S (2011) An R companion to applied regression. Sage, Thousand Oaks

    Google Scholar 

  28. Tao K, Fang M, Alroy J, Sahagian GG (2008) Imagable 4T1 model for the study of late stage breast cancer. BMC Cancer 8:228

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yang J, Mani SA, Donaher JL et al (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117:927–39

    Article  CAS  PubMed  Google Scholar 

  30. Eckhardt BL, Parker BS, van Laar RK et al (2005) Genomic analysis of a spontaneous model of breast cancer metastasis to bone reveals a role for the extracellular matrix. Mol Cancer Res 3:1–13

    CAS  PubMed  Google Scholar 

  31. Serganova I, Rizwan A, Ni X et al (2011) Metabolic imaging: a link between lactate dehydrogenase A, lactate, and tumor phenotype. Clin Cancer Res 17:6250–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ward JH Jr (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236–44

    Article  Google Scholar 

  33. Pulaski BA, Ostrand-Rosenberg S (2001) Mouse 4T1 breast tumor model. Curr Protoc Immunol Chapter 20:Unit 20 22.

  34. Yang S, Zhang JJ, Huang XY (2012) Mouse models for tumor metastasis. Methods Mol Biol 928:221–8

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Keereweer S, Van Driel PB, Snoeks TJ et al (2013) Optical image-guided cancer surgery: challenges and limitations. Clin Cancer Res 19:3745–54

    Article  PubMed  Google Scholar 

  36. Keereweer S, Kerrebijn JD, van Driel PB et al (2011) Optical image-guided surgery—where do we stand? Mol Imaging Biol 13:199–207

    Article  PubMed  Google Scholar 

  37. Frangioni JV (2003) In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 7:626–34

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institute of General Medical Sciences Grant RO1 GM073857 to OAA and YKR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yana K. Reshetnyak.

Ethics declarations

All animal studies were conducted according to the animal protocol AN04-12-011 approved by the Institutional Animal Care and Use Committee at the University of Rhode Island, in compliance with the principles and procedures outlined by NIH for the Care and Use of Animals.

Conflict of Interest

Andreev and Reshetnyak own stocks in company pHLIP, Inc. They have disclosed those interestsfully to the University of Rhode Island, and have in place an approved plan for managing any potentialconflicts. The following authors, Adochite, Moshnikova, Golijanin, and Katenka, declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1278 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adochite, RC., Moshnikova, A., Golijanin, J. et al. Comparative Study of Tumor Targeting and Biodistribution of pH (Low) Insertion Peptides (pHLIP® Peptides) Conjugated with Different Fluorescent Dyes. Mol Imaging Biol 18, 686–696 (2016). https://doi.org/10.1007/s11307-016-0949-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-016-0949-6

Key words

Navigation