Skip to main content

Advertisement

Log in

A High-Affinity Near-Infrared Fluorescent Probe to Target Bombesin Receptors

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to create new optical surgical navigation NIRF probes for prostate and breast cancers.

Procedures

IR800-linker-QWAVGHLM-NH2 with linker = GSG, GGG, and G-Abz4 were synthesized and characterized. IC50 for bombesin receptors (BBN-R) in PC-3 prostate and T47D breast cancer cells, fluorescence microscopy in PC-3 cells, and NIRF imaging in mice PC-3 tumor xenografts were studied.

Results

GGG, GSG, and G-Abz4 derivatives had IC50 (nM) for BBN-R+ PC-3 cells = 187 ± 31, 56 ± 5, and 2.6 ± 0.2 and T47D cells = 383 ± 1, 57.4 ± 1.2, and 3.1 ± 1.1, respectively. By microscopy the Abz4 derivative showed the highest uptake, was competed with by BBN, and had little to no binding to BBN-R− cells. In NIRF imaging the G-Abz4 probe was brighter than GGG probe in BBN-R+ tissues in vivo and tissues, tumors, and tumor slices ex vivo. Uptake could be partially blocked in BBN-R+ pancreas but not visibly in tumor.

Conclusions

Linker choice can dominate peptidic BBN-R binding. The G-Abz4 linker yields a higher affinity and specific BBN-R binder in this series of molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Abbreviations

GRP:

Gastrin-releasing peptide

NIRF:

Near-infrared fluorescent

BBN:

Bombesin

BBN-R:

Bombesin receptors

Abz-4:

4-aminobenzoic acid

References

  1. Nguyen QT, Tsien RY (2013) Fluorescence-guided surgery with live molecular navigation—a new cutting edge. Nat Rev Cancer 13:653–662

    Article  PubMed  CAS  Google Scholar 

  2. Keereweer S, Sterenborg HJ, Kerrebijn JD et al (2012) Image-guided surgery in head and neck cancer: current practice and future directions of optical imaging. Head Neck 34:120–126

    Article  PubMed  CAS  Google Scholar 

  3. Azhdarinia A, Ghosh P, Ghosh S et al (2012) Dual-labeling strategies for nuclear and fluorescence molecular imaging: a review and analysis. Mol Imaging Biol 14:261–276

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kovar JL, Simpson MA, Schutz-Geschwender A, Olive DM (2007) A systematic approach to the development of fluorescent contrast agents for optical imaging of mouse cancer models. Anal Biochem 367:1–12

    Article  PubMed  CAS  Google Scholar 

  5. Berezin MY, Guo KV, Akers W et al (2011) Rational approach to select small peptide molecular probes labeled with fluorescent cyanine dyes for in vivo optical imaging. Biochemistry-US 50:2691–2700

    Article  CAS  Google Scholar 

  6. Marshall MV, Draney D, Sevick-Muraca EM, Olive DM (2010) Single-dose intravenous toxicity study of IRDye 800CW in Sprague–Dawley rats. Mol Imaging Biol 12:583–594

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gong H, Kovar J, Little G et al (2010) In vivo imaging of xenograft tumors using an epidermal growth factor receptor-specific affibody molecule labeled with a near-infrared fluorophore. Neoplasia 12:139–149

    PubMed  CAS  PubMed Central  Google Scholar 

  8. Qi S, Miao Z, Liu H et al (2012) Evaluation of four affibody-based near-infrared fluorescent probes for optical imaging of epidermal growth factor receptor positive tumors. Bioconjug Chem. doi:10.1021/bc200596a

    PubMed Central  Google Scholar 

  9. Terwisscha van Scheltinga AG, van Dam GM, Nagengast WB et al (2011) Intraoperative near-infrared fluorescence tumor imaging with vascular endothelial growth factor and human epidermal growth factor receptor 2 targeting antibodies. J Nucl Med 52:1778–1785

    Article  PubMed  CAS  Google Scholar 

  10. Wu F, Tamhane M, Morris ME (2012) Pharmacokinetics, lymph node uptake, and mechanistic PK model of near-infrared dye-labeled bevacizumab after IV and SC administration in mice. AAPS J 14:252–261

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Kovar JL, Volcheck W, Sevick-Muraca E et al (2009) Characterization and performance of a near-infrared 2-deoxyglucose optical imaging agent for mouse cancer models. Anal Biochem 384:254–262

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Levi J, Cheng Z, Gheysens O et al (2007) Fluorescent fructose derivatives for imaging breast cancer cells. Bioconjug Chem 18:628–634

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Chen Y, Dhara S, Banerjee SR et al (2009) A low molecular weight PSMA-based fluorescent imaging agent for cancer. Biochem Biophys Res Commun 390:624–629

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Liu T, Nedrow-Byers JR, Hopkins MR, Berkman CE (2011) Spacer length effects on in vitro imaging and surface accessibility of fluorescent inhibitors of prostate specific membrane antigen. Bioorg Med Chem Lett 21:7013–7016

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Meincke M, Tiwari S, Hattermann K et al (2011) Near-infrared molecular imaging of tumors via chemokine receptors CXCR4 and CXCR7. Clin Exp Metastasis 28:713–720

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Yang Y, Zhang Y, Hong H et al (2011) In vivo near-infrared fluorescence imaging of CD105 expression during tumor angiogenesis. Eur J Nucl Med Mol Imaging 38:2066–2076

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Zhao D, Stafford JH, Zhou H, Thorpe PE (2011) Near-infrared optical imaging of exposed phosphatidylserine in a mouse glioma model. Transl Oncol 4:355–364

    Article  PubMed  PubMed Central  Google Scholar 

  18. Stafford JH, Thorpe PE (2011) Increased exposure of phosphatidylethanolamine on the surface of tumor vascular endothelium. Neoplasia 13:299–308

    PubMed  CAS  PubMed Central  Google Scholar 

  19. Ye Y, Zhu L, Ma Y et al (2011) Synthesis and evaluation of new iRGD peptide analogs for tumor optical imaging. Bioorg Med Chem Lett 21:1146–1150

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Lee S, Xie J, Chen XY (2010) Peptides and peptide hormones for molecular imaging and disease diagnosis. Chem Rev 110:3087–3111

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Reubi JC, Maecke HR (2008) Peptide-based probes for cancer imaging. J Nucl Med 49:1735–1738

    Article  PubMed  CAS  Google Scholar 

  22. Ohki-Hamazaki H, Iwabuchi M, Maekawa F (2005) Development and function of bombesin-like peptides and their receptors. Int J Dev Biol 49:293–300

    Article  PubMed  CAS  Google Scholar 

  23. Markwalder R, Reubi JC (1999) Gastrin-releasing peptide receptors in the human prostate: relation to neoplastic transformation. Cancer Res 59:1152–1159

    PubMed  CAS  Google Scholar 

  24. Reubi JC (2003) Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr Rev 24:389–427

    Article  PubMed  CAS  Google Scholar 

  25. Reubi JC, Korner M, Waser B et al (2004) High expression of peptide receptors as a novel target in gastrointestinal stromal tumours. Eur J Nucl Med Mol Imaging 31:803–810

    Article  PubMed  CAS  Google Scholar 

  26. Reubi JC, Macke HR, Krenning EP (2005) Candidates for peptide receptor radiotherapy today and in the future. J Nucl Med 46:67S–75S

    PubMed  CAS  Google Scholar 

  27. Reubi JC, Wenger S, Schmuckli-Maurer J et al (2002) Bombesin receptor subtypes in human cancers: detection with the universal radioligand 125I-[D-TYR6, β-ALA11, PHE13, NLE14] Bombesin (6–14). Clin Cancer Res 8:1139–1146

    PubMed  CAS  Google Scholar 

  28. Fleischmann A, Waser B, Reubi JC (2007) Overexpression of gastrin-releasing peptide receptors in tumor-associated blood vessels of human ovarian neoplasms. Cell Oncol 29:421–433

    PubMed  CAS  Google Scholar 

  29. Lango MN, Dyer KF, Lui VW et al (2002) Gastrin-releasing peptide receptor-mediated autocrine growth in squamous cell carcinoma of the head and neck. J Natl Cancer Inst 94:375–383

    Article  PubMed  CAS  Google Scholar 

  30. Fleischmann A, Waser B, Reubi JC (2009) High expression of gastrin-releasing peptide receptors in the vascular bed of urinary tract cancers: promising candidates for vascular targeting applications. Endocr Relat Cancer 16:623–633

    Article  PubMed  CAS  Google Scholar 

  31. Lantry LE, Cappelletti E, Maddalena ME et al (2006) 177Lu-AMBA: synthesis and characterization of a selective 177Lu-labeled GRP-R agonist for systemic radiotherapy of prostate cancer. J Nucl Med 47:1144–1152

    PubMed  CAS  Google Scholar 

  32. Cagnolini A, Chen J, Ramos K et al (2010) Automated synthesis, characterization and biological evaluation of [(68)Ga]Ga-AMBA, and the synthesis and characterization of (nat)Ga-AMBA and [(67)Ga]Ga-AMBA. Appl Radiat Isot 68:2285–2292

    Article  PubMed  CAS  Google Scholar 

  33. Fani M, Maecke HR, Okarvi SM (2012) Radiolabeled peptides: valuable tools for the detection and treatment of cancer. Theranostics 2:481–501

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Fani M, Maecke HR (2012) Radiopharmaceutical development of radiolabelled peptides. Eur J Nucl Med Mol Imaging 39(Suppl 1):S11–S30

    Article  PubMed  Google Scholar 

  35. Bohme I, Beck-Sickinger AG (2009) Illuminating the life of GPCRs. Cell Commun Signal 7:16

    Article  PubMed  PubMed Central  Google Scholar 

  36. Achilefu S, Jimenez HN, Dorshow RB et al (2002) Synthesis, in vitro receptor binding, and in vivo evaluation of fluorescein and carbocyanine peptide-based optical contrast agents. J Med Chem 45:2003–2015

    Article  PubMed  CAS  Google Scholar 

  37. Ma L, Yu P, Veerendra B et al (2007) In vitro and in vivo evaluation of Alexa Fluor 680-bombesin[7-14]NH2 peptide conjugate, a high-affinity fluorescent probe with high selectivity for the gastrin-releasing peptide receptor. Mol Imaging 6:171–180

    PubMed  CAS  Google Scholar 

  38. Hong FD, Clayman GL (2000) Isolation of a peptide for targeted drug delivery into human head and neck solid tumors. Cancer Res 60:6551–6556

    PubMed  CAS  Google Scholar 

  39. Chen J, Linder KE, Cagnolini A et al (2008) Synthesis, stabilization and formulation of [177Lu]Lu-AMBA, a systemic radiotherapeutic agent for gastrin releasing peptide receptor positive tumors. Appl Radiat Isot 66:497–505

    Article  PubMed  CAS  Google Scholar 

  40. Lantry LE, Cappelletti E, Maddalena ME et al (2006) Lu-177-AMBA: synthesis and characterization of a selective Lu-177-labeled GRP-R agonist for systemic radiotherapy of prostate cancer. J Nucl Med 47:1144–1152

    PubMed  CAS  Google Scholar 

  41. Wang S-H, Ding H, Shrivastava A, Tweedle MF (2013) Study of Bombesin receptor family in breast cancer cells [abstract]

  42. Choi HS, Nasr K, Alyabyev S et al (2011) Synthesis and in vivo fate of zwitterionic near-infrared fluorophores. Angew Chem Int Ed Engl 50:6258–6263

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Choi HS, Gibbs SL, Lee JH et al (2013) Targeted zwitterionic near-infrared fluorophores for improved optical imaging. Nat Biotechnol 31:148–153

    Article  PubMed  CAS  Google Scholar 

  44. Garrison JC, Rold TL, Sieckman GL et al (2008) Evaluation of the pharmacokinetic effects of various linking group using the 111In-DOTA-X-BBN(7-14)NH2 structural paradigm in a prostate cancer model. Bioconjug Chem 19:1803–1812

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Cai QY, Yu P, Besch-Williford C et al (2013) Near-infrared fluorescence imaging of gastrin releasing peptide receptor targeting in prostate cancer lymph node metastases. Prostate 73:842–854

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Funding sources for this research are The Ohio State University College of Medicine, The Stefanie Spielman Foundation, and NIH 1 S10 RR025660-01A1.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael F. Tweedle.

Additional information

Ajay Shrivastava and Haiming Ding contributed equally to this work

Electronic supplementary material

HPLC traces of synthesized compounds, analytical data on synthesized molecules, additional mice organ and body images, and structures of two commercial fluors compared.

ESM 1

(PDF 1802 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shrivastava, A., Ding, H., Kothandaraman, S. et al. A High-Affinity Near-Infrared Fluorescent Probe to Target Bombesin Receptors. Mol Imaging Biol 16, 661–669 (2014). https://doi.org/10.1007/s11307-014-0727-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-014-0727-2

Key words

Navigation