Skip to main content

Advertisement

Log in

In Vivo Bioluminescence Tumor Imaging of RGD Peptide-modified Adenoviral Vector Encoding Firefly Luciferase Reporter Gene

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The goal of this study is to demonstrate the feasibility of chemically modified human adenovirus (Ad) vectors for tumor retargeting.

Procedures

E1- and E3-deleted Ad vectors carrying firefly luciferase reporter gene under cytomegalovirus promoter (AdLuc) was surface-modified with cyclic arginine–glycine–aspartic acid (RGD) peptides through a bifunctional poly(ethyleneglycol) linker (RGD-PEG-AdLuc) for integrin αvβ3 specific delivery. The Coxsackie and adenovirus viral receptor (CAR) and integrin αvβ3 expression in various tumor cell lines was determined by reverse transcriptase PCR and fluorescence-activated cell sorting. Bioluminescence imaging was performed in vitro and in vivo to evaluate RGD-modified AdLuc infectivity.

Results

RGD-PEG-AdLuc abrogated the native CAR tropism and exhibited significantly enhanced transduction efficiency of integrin-positive tumors than AdLuc through intravenous administration.

Conclusion

This approach provides a robust platform for site-specific gene delivery and noninvasive monitoring of the transgene delivery efficacy and homing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. McConnell MJ, Imperiale MJ (2004) Biology of adenovirus and its use as a vector for gene therapy. Hum Gene Ther 15:1022–1033

    Article  PubMed  CAS  Google Scholar 

  2. Bergelson JM, Cunningham JA, Droguett G, et al. (1997) Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 275:1320–1323

    Article  PubMed  CAS  Google Scholar 

  3. Hemminki A, Kanerva A, Liu B, et al. (2003) Modulation of Coxsackie–adenovirus receptor expression for increased adenoviral transgene expression. Cancer Res 63:847–853

    PubMed  CAS  Google Scholar 

  4. Huard J, Lochmuller H, Acsadi G, et al. (1995) The route of administration is a major determinant of the transduction efficiency of rat tissues by adenoviral recombinants. Gene Ther 2:107–115

    PubMed  CAS  Google Scholar 

  5. Sullivan DE, Dash S, Du H, et al. (1997) Liver-directed gene transfer in non-human primates. Hum Gene Ther 8:1195–1206

    PubMed  CAS  Google Scholar 

  6. Tomanin R, Scarpa M (2004) Why do we need new gene therapy viral vectors? Characteristics, limitations and future perspectives of viral vector transduction. Curr Gene Ther 4:357–372

    PubMed  CAS  Google Scholar 

  7. Akporiaye ET, Hersh E (1999) Clinical aspects of intratumoral gene therapy. Curr Opin Mol Ther 1:443–453

    PubMed  CAS  Google Scholar 

  8. Mizuguchi H, Koizumi N, Hosono T, et al. (2001) A simplified system for constructing recombinant adenoviral vectors containing heterologous peptides in the HI loop of their fiber knob. Gene Ther 8:730–735

    Article  PubMed  CAS  Google Scholar 

  9. Mizuguchi H, Hayakawa T (2002) Adenovirus vectors containing chimeric type 5 and type 35 fiber proteins exhibit altered and expanded tropism and increase the size limit of foreign genes. Gene 285:69–77

    Article  PubMed  CAS  Google Scholar 

  10. Mizuguchi H, Hayakawa T (2004) Targeted adenovirus vectors. Hum Gene Ther 15:1034–1044

    Article  PubMed  CAS  Google Scholar 

  11. Stevenson SC, Rollence M, Marshall-Neff J, McClelland A (1997) Selective targeting of human cells by a chimeric adenovirus vector containing a modified fiber protein. J Virol 71:4782–4790

    PubMed  CAS  Google Scholar 

  12. Shayakhmetov DM, Papayannopoulou T, Stamatoyannopoulos G, Lieber A (2000) Efficient gene transfer into human CD34(+) cells by a retargeted adenovirus vector. J Virol 74:2567–2583

    Article  PubMed  CAS  Google Scholar 

  13. Koizumi N, Mizuguchi H, Utoguchi N, Watanabe Y, Hayakawa T (2003) Generation of fiber-modified adenovirus vectors containing heterologous peptides in both the HI loop and C terminus of the fiber knob. J Gene Med 5:267–276

    Article  PubMed  CAS  Google Scholar 

  14. Watkins SJ, Mesyanzhinov VV, Kurochkina LP, Hawkins RE (1997) The ‘adenobody’ approach to viral targeting: specific and enhanced adenoviral gene delivery. Gene Ther 4:1004–1012

    Article  PubMed  CAS  Google Scholar 

  15. Goldman CK, Rogers BE, Douglas JT, et al. (1997) Targeted gene delivery to Kaposi’s sarcoma cells via the fibroblast growth factor receptor. Cancer Res 57:1447–1451

    PubMed  CAS  Google Scholar 

  16. Sosnowski BA, Gu DL, D’Andrea M, Doukas J, Pierce GF (1999) FGF2-targeted adenoviral vectors for systemic and local disease. Curr Opin Mol Ther 1:573–579

    PubMed  CAS  Google Scholar 

  17. Douglas JT, Miller CR, Kim M, et al. (1999) A system for the propagation of adenoviral vectors with genetically modified receptor specificities. Nat Biotechnol 17:470–475

    Article  PubMed  CAS  Google Scholar 

  18. Fisher KD, Stallwood Y, Green NK, et al. (2001) Polymer-coated adenovirus permits efficient retargeting and evades neutralising antibodies. Gene Ther 8:341–348

    Article  PubMed  CAS  Google Scholar 

  19. O’Riordan CR, Lachapelle A, Delgado C, et al. (1999) PEGylation of adenovirus with retention of infectivity and protection from neutralizing antibody in vitro and in vivo. Hum Gene Ther 10:1349–1358

    Article  PubMed  CAS  Google Scholar 

  20. Croyle MA, Yu QC, Wilson JM (2000) Development of a rapid method for the PEGylation of adenoviruses with enhanced transduction and improved stability under harsh storage conditions. Hum Gene Ther 11:1713–1722

    Article  PubMed  CAS  Google Scholar 

  21. Croyle MA, Chirmule N, Zhang Y, Wilson JM (2001) “Stealth” adenoviruses blunt cell-mediated and humoral immune responses against the virus and allow for significant gene expression upon readministration in the lung. J Virol 75:4792–4801

    Article  PubMed  CAS  Google Scholar 

  22. Croyle MA, Chirmule N, Zhang Y, Wilson JM (2002) PEGylation of E1-deleted adenovirus vectors allows significant gene expression on readministration to liver. Hum Gene Ther 13:1887–1900

    Article  PubMed  CAS  Google Scholar 

  23. Eto Y, Gao JQ, Sekiguchi F, et al. (2005) PEGylated adenovirus vectors containing RGD peptides on the tip of PEG show high transduction efficiency and antibody evasion ability. J Gene Med 7:604–612

    Article  PubMed  CAS  Google Scholar 

  24. Green NK, Herbert CW, Hale SJ, et al. (2004) Extended plasma circulation time and decreased toxicity of polymer-coated adenovirus. Gene Ther 11:1256–1263

    Article  PubMed  CAS  Google Scholar 

  25. Lanciotti J, Song A, Doukas J, et al. (2003) Targeting adenoviral vectors using heterofunctional polyethylene glycol FGF2 conjugates. Mol Ther 8:99–107

    Article  PubMed  CAS  Google Scholar 

  26. Ogawara K, Rots MG, Kok RJ, et al. (2004) A novel strategy to modify adenovirus tropism and enhance transgene delivery to activated vascular endothelial cells in vitro and in vivo. Hum Gene Ther 15:433–443

    Article  PubMed  CAS  Google Scholar 

  27. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687

    Article  PubMed  CAS  Google Scholar 

  28. Guo W, Giancotti FG (2004) Integrin signalling during tumour progression. Nat Rev Mol Cell Biol 5:816–826

    Article  PubMed  CAS  Google Scholar 

  29. Jin H, Varner J (2004) Integrins: roles in cancer development and as treatment targets. Br J Cancer 90:561–565

    Article  PubMed  CAS  Google Scholar 

  30. Brooks PC, Montgomery AM, Rosenfeld M, et al. (1994) Integrin αvβ3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79:1157–1164

    Article  PubMed  CAS  Google Scholar 

  31. Kerr JS, Slee AM, Mousa SA (2002) The alpha v integrin antagonists as novel anticancer agents: an update. Expert Opin Investig Drugs 11:1765–1774

    Article  PubMed  CAS  Google Scholar 

  32. Shannon KE, Keene JL, Settle SL, et al. (2004) Anti-metastatic properties of RGD-peptidomimetic agents S137 and S247. Clin Exp Metastasis 21:129–138

    Article  PubMed  CAS  Google Scholar 

  33. Burke PA, DeNardo SJ, Miers LA, et al. (2002) Cilengitide targeting of αvβ3 integrin receptor synergizes with radioimmunotherapy to increase efficacy and apoptosis in breast cancer xenografts. Cancer Res 62:4263–4272

    PubMed  CAS  Google Scholar 

  34. Gutheil JC, Campbell TN, Pierce PR, et al. (2000) Targeted antiangiogenic therapy for cancer using Vitaxin: a humanized monoclonal antibody to the integrin αvβ3. Clin Cancer Res 6:3056–3061

    PubMed  CAS  Google Scholar 

  35. Haubner R, Wester HJ, Weber WA, et al. (2001) Noninvasive imaging of αvβ3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res 61:1781–1785

    PubMed  CAS  Google Scholar 

  36. Chen X, Hou Y, Tohme M, et al. (2004) Pegylated Arg–Gly–Asp peptide: 64Cu labeling and PET imaging of brain tumor αvβ3-integrin expression. J Nucl Med 45:1776–1783

    PubMed  CAS  Google Scholar 

  37. Janssen ML, Oyen WJ, Dijkgraaf I, et al. (2002) Tumor targeting with radiolabeled αvβ3 integrin binding peptides in a nude mouse model. Cancer Res 62:6146–6151

    PubMed  CAS  Google Scholar 

  38. Chen X, Conti PS, Moats RA (2004) In vivo near-infrared fluorescence imaging of integrin αvβ3 in brain tumor xenografts. Cancer Res 64:8009–8014

    Article  PubMed  CAS  Google Scholar 

  39. Liang Q, Nguyen K, Satyamurthy N, et al. (2002) Monitoring adenoviral DNA delivery, using a mutant herpes simplex virus type 1 thymidine kinase gene as a PET reporter gene. Gene Ther 9:1659–1666

    Article  PubMed  CAS  Google Scholar 

  40. Xiong Z, Cheng Z, Zhang X, et al. (2006) Imaging chemically modified adenovirus for targeting tumors expressing integrin αvβ3 in living mice with mutant herpes simplex virus type 1 thymidine kinase PET reporter gene. J Nucl Med 47:130–139

    PubMed  CAS  Google Scholar 

  41. Read ML, Etrych T, Ulbrich K, Seymour LW (1999) Characterisation of the binding interaction between poly(L-lysine) and DNA using the fluorescamine assay in the preparation of non-viral gene delivery vectors. FEBS Lett 461:96–100

    Article  PubMed  CAS  Google Scholar 

  42. Smith AE (1995) Viral vectors in gene therapy. Annu Rev Microbiol 49:807–838

    Article  PubMed  CAS  Google Scholar 

  43. Thomas CE, Ehrhardt A, Kay MA (2003) Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 4:346–358

    Article  PubMed  CAS  Google Scholar 

  44. Wu JC, Sundaresan G, Iyer M, Gambhir SS (2001) Noninvasive optical imaging of firefly luciferase reporter gene expression in skeletal muscles of living mice. Mol Ther 4:297–306

    Article  PubMed  CAS  Google Scholar 

  45. Zhang X, Xiong Z, Wu X, et al. (2005) Quantitative PET imaging of tumor integrin avb3 expression with [18F]FRGD2. J Nucl Med 47:492–501

    Google Scholar 

  46. Alemany R, Suzuki K, Curiel DT (2000) Blood clearance rates of adenovirus type 5 in mice. J Gen Virol 81:2605–2609

    PubMed  CAS  Google Scholar 

  47. Mok H, Palmer DJ, Ng P, Barry MA (2005) Evaluation of polyethylene glycol modification of first-generation and helper-dependent adenoviral vectors to reduce innate immune responses. Mol Ther 11:66–79

    Article  PubMed  CAS  Google Scholar 

  48. Rolland A, Collet B, Le Verge R, Toujas L (1989) Blood clearance and organ distribution of intravenously administered polymethacrylic nanoparticles in mice. J Pharm Sci 78:481–484

    Article  PubMed  CAS  Google Scholar 

  49. Doran JE, Lundsgaard-Hansen P (1988) Role of the reticuloendothelial system in the pathogenesis of organ damage. Br J Hosp Med 39:221–225

    PubMed  CAS  Google Scholar 

  50. Contag CH, Bachmann MH (2002) Advances in in vivo bioluminescence imaging of gene expression. Annu Rev Biomed Eng 4:235–260

    Article  PubMed  CAS  Google Scholar 

  51. Gross S, Piwnica-Worms D (2005) Spying on cancer: molecular imaging in vivo with genetically encoded reporters. Cancer Cell 7:5–15

    PubMed  CAS  Google Scholar 

  52. Gambhir SS, Barrio JR, Phelps ME, et al. (1999) Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography. Proc Natl Acad Sci USA 96:2333–2338

    Article  PubMed  CAS  Google Scholar 

  53. Gambhir SS, Bauer E, Black ME, et al. (2000) A mutant herpes simplex virus type 1 thymidine kinase reporter gene shows improved sensitivity for imaging reporter gene expression with positron emission tomography. Proc Natl Acad Sci USA 97:2785–2790

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by National Institute of Biomedical Imaging and Bioengineering (R21 EB001785), National Cancer Institute (R21 CA102123, P50 CA114747, U54 CA119367, and R24 CA93862), Department of Defense (W81XWH-04-1-0697, W81XWH-06-1-0665, W81XWH-06-1-0042, and DAMD17-03-1-0143), and a Benedict Cassen Postdoctoral Fellowship from the Education and Research Foundation of the Society of Nuclear Medicine (to WC). GN and ZX contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyuan Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niu, G., Xiong, Z., Cheng, Z. et al. In Vivo Bioluminescence Tumor Imaging of RGD Peptide-modified Adenoviral Vector Encoding Firefly Luciferase Reporter Gene. Mol Imaging Biol 9, 126–134 (2007). https://doi.org/10.1007/s11307-007-0079-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-007-0079-2

Key words

Navigation