Skip to main content

Advertisement

Log in

Increased urea availability promotes adjustments in C/N metabolism and lipid content without impacting growth in Chlamydomonas reinhardtii

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

The use of urea as a nitrogen (N) source by Chlorophytes usually enhances biomass and lipid production when compared to ammonium (NH4+). However, the metabolic shifts displayed by Chlamydomonas reinhardtii growing with this organic N source are not known.

Objectives

This study aimed: (i) to characterize the metabolism of C. reinhardtii cultivated in media containing only urea as N source as well as combined with different NH4+ ratios; (ii) to understand how metabolism respond to urea availability.

Methods

Specific quantification of metabolites using 96-well microplates, and high-performance liquid chromatography combined with non-targeted metabolite profiling by gas chromatography (GC)–time-of-flight (TOF)-mass spectrometry (MS) were used in this study. In addition, GC analysis was used to determine fatty acid profiling.

Results

The use of urea did not alter the growth rate in comparison with NH4+. Interestingly, the cell number decreased and the cell size increased proportionally with urea availability. Furthermore, chlorophyll, protein and lipid contents increased with the amount of urea. Regarding the fatty acid profile, oleic acid (C18:1 w8) decreased with amount of urea, while linoleic acid (C18:2 w6) doubled in urea-containing medium.

Conclusions

These results indicate that urea promotes remarkable adjustments in metabolism, without drastic changes in biomass, promoting changes in carbohydrate and amino acid metabolism, as well as in lipids production and fatty acid profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Atteia, A., Van Lis, R., Tielens, A. G. M., & Martin, W. F. (2013). Anaerobic energy metabolism in unicellular photosynthetic eukaryotes. Biochimica et Biophysica Acta, 1827, 210–223.

    CAS  PubMed  Google Scholar 

  • Barros, A., Guerra, T. L., Simões, M., Santos, E., Fonseca, D., Silva, J., Costa, L., & Navalho, J. (2017). Mass balance analysis of carbon and nitrogen in industrial scale mixotrophic microalgae cultures. Algal Research, 21, 35–41.

    Google Scholar 

  • Berman, T., & Bronk, D. (2003). Dissolved organic nitrogen: A dynamic participant in aquatic ecosystems. Aquatic Microbial Ecology, 31, 279–305.

    Google Scholar 

  • Blaby, I. K., Glaesener, A. G., Mettler, T., Fitz-Gibbon, S. T., Gallaher, S. D., Liu, B., Boyle, N. R., Kropat, J., Stitt, M., Johnson, S., Benning, C., Pellegrini, M., Casero, D., & Merchant, S. S. (2013). Systems-level analysis of nitrogen starvation-induced modifications of carbon metabolism in a Chlamydomonas reinhardtii starchless mutant. The Plant Cell, 25, 4305–4323.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    CAS  PubMed  Google Scholar 

  • Cagliari, A., Margis, R., Santos, D., Maraschin, F., Turchetto-Zolet, A. C., Loss, G., & Margis-Pinheiro, M. (2011). Biosynthesis of triacylglycerols (TAGs) in plants and algae. International Journal of Plant Biology, 2, 10.

    Google Scholar 

  • Chen, W., Zhang, C., Song, L., Sommerfeld, M., & Hu, Q. (2009). A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. Journal of Microbiological Methods, 77, 41–47.

    CAS  PubMed  Google Scholar 

  • Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25, 294–306.

    CAS  PubMed  Google Scholar 

  • Cross, J. M., von Korff, M., Altmann, T., Bartzetko, L., Sulpice, R., Gibon, Y., Palacios, N., & Stitt, M. (2006). Variation of enzyme activities and metabolite levels in 24 Arabidopsis accessions growing in carbon-limited conditions. Plant Physiology, 142, 1574–1588.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cuadros-Inostroza, A., Caldana, C., Redestig, H., Kusano, M., Lisec, J., Peña-Cortés, H., Willmitzer, L., & Hannah, M. A. (2009). TargetSearch—A Bioconductor package for the efficient preprocessing of GC-MS metabolite profiling data. BMC Bioinformatics, 10, 428.

    PubMed  PubMed Central  Google Scholar 

  • Dean, A. P., Sigee, D. C., Estrada, B., & Pittman, J. K. (2010). Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae. Bioresource Technology, 101, 4499–4507.

    CAS  PubMed  Google Scholar 

  • Dhup, S., Kannan, D. C., & Dhawan, V. (2016). Understanding urea assimilation and its effect on lipid production and fatty acid composition of Scenedesmus sp. Symbiosis Journal of Biochemistry. https://doi.org/10.15226/2376-4589/2/1/00108.

    Article  Google Scholar 

  • Eustance, E., Gardner, R. D., Moll, K. M., Menicucci, J., Gerlach, R., & Peyton, B. M. (2013). Growth, nitrogen utilization and biodiesel potential for two chlorophytes grown on ammonium, nitrate or urea. Journal of Applied Phycology, 25, 1663–1677.

    CAS  Google Scholar 

  • Fan, J., Cui, Y., Wan, M., Wang, W., & Li, Y. (2014). Lipid accumulation and biosynthesis genes response of the oleaginous Chlorella pyrenoidosa under three nutrition stressors. Biotechnology for Biofuels, 7, 17.

    PubMed  PubMed Central  Google Scholar 

  • Fan, J., Yan, C., Andre, C., Shanklin, J., Schwender, J., & Xu, C. (2012). Oil accumulation is controlled by carbon precursor supply for fatty acid synthesis in Chlamydomonas reinhardtii. Plant and Cell Physiology, 53, 1380–1390.

    CAS  PubMed  Google Scholar 

  • Fernie, A. R., Roscher, A., Ratcliffe, R. G., & Kruger, N. J. (2001). Fructose 2,6-bisphosphate activates pyrophosphate: fructose-6-phosphate 1-phosphotransferase and increases triose phosphate to hexose phosphate cycling in heterotrophic cells. Planta, 212, 250–263.

    CAS  PubMed  Google Scholar 

  • Ferreira, D. F. (2014). Sisvar: A guide for its bootstrap procedures in multiple comparisons. Ciência e Agrotecnologia, 38, 109–112.

    Google Scholar 

  • Florencio, F. J., & Vega, J. M. (1983). Utilization of nitrate, nitrite and ammonium by Chlamydomonas reinhardii: Photoproduction of ammonium. Planta, 158, 288–293.

    CAS  PubMed  Google Scholar 

  • Gérin, S., Mathy, G., Blomme, A., Franck, F., & Sluse, F. E. (2010). Plasticity of the mitoproteome to nitrogen sources (nitrate and ammonium) in Chlamydomonas reinhardtii: The logic of AOX1 gene localization. Biochimica et Biophysica Acta, 1797, 994–1003.

    PubMed  Google Scholar 

  • Gonçalves, E. C., Johnson, J. V., & Rathinasabapathi, B. (2013). Conversion of membrane lipid acyl groups to triacylglycerol and formation of lipid bodies upon nitrogen starvation in biofuel green algae Chlorella UTEX29. Planta, 238, 895–906.

    PubMed  Google Scholar 

  • Gonçalves, E. C., Koh, J., Zhu, N., Yoo, M. J., Chen, S., Matsuo, T., Johnson, J. V., & Rathinasabapathi, B. (2016). Nitrogen starvation-induced accumulation of triacylglycerol in the green algae: Evidence for a role for ROC40, a transcription factor involved in circadian rhythm. The Plant Journal, 85, 743–757.

    PubMed  Google Scholar 

  • Goodenough, U., Blaby, I., Casero, D., Gallaher, S. D., Goodson, C., Johnson, S., Lee, J. H., Merchant, S. S., Pellegrini, M., Roth, R., Rusch, J., Singh, M., Umen, G., Weiss, T. L., & Wulan, T. (2014). The path to triacylglyceride obesity in the sta6 strain of Chlamydomonas reinhardtii. Eukaryotic Cell, 13, 591–613.

    PubMed  PubMed Central  Google Scholar 

  • Goodson, C., Roth, R., Wang, Z. T., & Goodenough, U. (2011). Structural correlates of cytoplasmic and chloroplast lipid body synthesis in Chlamydomonas reinhardtii and stimulation of lipid body production with acetate boost. Eukaryotic Cell, 10, 1592–1606.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Griffiths, M. J., Garcin, C., Van Hille, R. P., & Harrison, S. T. L. (2011). Interference by pigment in the estimation of microalgal biomass concentration by optical density. Journal of Microbiological Methods, 85, 119–123.

    CAS  PubMed  Google Scholar 

  • Harris, E. (1989). The Chlamydomonas sourcebook. A comprehensive guide to biology and laboratory (p. 780) San Diego: Academic Press.

    Google Scholar 

  • Hodson, R. C., Williams, S. K., & Davidson, W. R. (1975). Metabolic control of urea catabolism in Chlamydomonas reinhardtii and Chlorella pyrenoidosa. Journal of Bacteriology, 121, 1022–1035.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh, C. H., & Wu, W. T. (2009). Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresource Technology, 100, 3921–3926.

    CAS  PubMed  Google Scholar 

  • Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., & Darzins, A. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. The Plant Journal, 54, 621–639.

    CAS  PubMed  Google Scholar 

  • James, G. O., Hocart, C. H., Hillier, W., Chen, H., Kordbacheh, F., Price, G. D., & Djordjevic, M. A. (2011). Fatty acid profiling of Chlamydomonas reinhardtii under nitrogen deprivation. Bioresource Technology, 102, 3343–3351.

    CAS  PubMed  Google Scholar 

  • Juergens, M. T., Deshpande, R. R., Lucker, B. F., Park, J. J., Wang, H., Gargouri, M., Holguin, F. O., Disbrow, B., Schaub, T., Skepper, J. N., Kramer, D. M., Gang, D. R., Hicks, L. M., & Shachar-Hill, Y. (2015). The regulation of photosynthetic structure and function during nitrogen deprivation in Chlamydomonas reinhardtii. Plant Physiology, 167, 558–573.

    CAS  PubMed  Google Scholar 

  • Jung, H. (2002). The sodium/substrate symporter family: Structural and functional features. FEBS Letters, 529, 73–77.

    CAS  PubMed  Google Scholar 

  • Kamalanathan, M., Pierangelini, M., Shearman, L. A., et al. (2016). Impacts of nitrogen and phosphorus starvation on the physiology of Chlamydomonas reinhardtii. Journal of Applied Phycology, 28(3), 1509–1520.

    CAS  Google Scholar 

  • Kirk, D. L., & Kirk, M. M. (1978). Carrier-mediated uptake of arginine and urea by Chlamydomonas reinhardtii. Plant Physiology, 61, 556–560.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kjeldahl, J. (1883). “Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern” (New method for the determination of nitrogen in organic substances). Fresenius’ Zeitschrift für Analytische Chemie, 22, 366–383.

    Google Scholar 

  • Kropat, J., Hong-Hermesdorf, A., Casero, D., Ent, P., Castruita, M., Pellegrini, M., Merchant, S. S., & Malasarn, D. (2011). A revised mineral nutrient supplement increases biomass and growth rate in Chlamydomonas reinhardtii. The Plant Journal, 66, 770–780.

    CAS  PubMed  Google Scholar 

  • Lari, Z., Moradi-Kheibari, N., Ahmadzadeh, H., Abrishamchi, P., Moheimani, N. R., Murry, M. A. (2016). Bioprocess engineering of microalgae to optimize lipid production through nutrient management. Journal of Applied Phycology, 28, 3235–3250.

    CAS  Google Scholar 

  • Lee, D. Y., Park, J.-J., Barupal, D. K., & Fiehn, O. (2012). System response of metabolic networks in Chlamydomonas reinhardtii to total available ammonium. Molecular & Cellular Proteomics, 11, 973–988.

    CAS  Google Scholar 

  • Li, W., Fingrut, D. R., & Maxwell, D. P. (2009). Characterization of a mutant of Chlamydomonas reinhardtii deficient in the molybdenum cofactor. Physiologia Plantarum, 136, 336–350.

    CAS  PubMed  Google Scholar 

  • Li, Y., Han, D., Hu, G., Dauvillee, D., Sommerfeld, M., Ball, S., & Hu, Q. (2010). Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol. Metabolic Engineering, 12, 387–391.

    PubMed  Google Scholar 

  • Lisec, J., Schauer, N., Kopka, J., Willmitzer, L., & Fernie, A. R. (2006). Gas chromatography mass spectrometry-based metabolite profiling in plants. Nature Protocols, 1, 387–396.

    CAS  PubMed  Google Scholar 

  • Loera-Quezada, M. M., Angeles, G., & Olguín, E. J. (2011). Effect of irradiance on the cell density, size and lipid accumulation of Neochloris oleoabundans. Revista Latinoamericana de Biotecnología Ambiental y Algal, 2, 81–92.

    Google Scholar 

  • Machado, M., Bromke, M., Domingues Júnior, A. P., Vaz, M. G. M. V., Rosa, R. M., Vinson, C. C., Sabir, J. S., Rocha, D. I., Martins, M. A., Araújo, W. L., Willmitzer, L., Szymanski, J., & Nunes-Nesi, A. (2016). Comprehensive metabolic reprograming in freshwater Nitzschia palea strains undergoing nitrogen starvation is likely associated with its ecological origin. Algal Research, 18, 116–126.

    Google Scholar 

  • Markou, G., Vandamme, D., & Muylaert, K. (2014). Microalgal and cyanobacterial cultivation: The supply of nutrients. Water Research, 65, 186–202.

    CAS  PubMed  Google Scholar 

  • Masuko, T., Minami, A., Iwasaki, N., Majima, T., Nishimura, S. I., & Lee, Y. C. (2005). Carbohydrate analysis by a phenol–sulfuric acid method in microplate format. Analytical Biochemistry, 339, 69–72.

    CAS  PubMed  Google Scholar 

  • Matthew, T., Zhou, W., Rupprecht, J., Lim, L., Thomas-Hall, S. R., Doebbe, A., Kruse, O., Hankamer, B., Marx, U. C., Smith, S. M., & Schenk, P. M. (2009). The metabolome of Chlamydomonas reinhardtii following Induction of anaerobic H2 production by sulfur depletion. Journal of Biological Chemistry, 284, 23415–23425.

    CAS  PubMed  Google Scholar 

  • Merchán, F., Van den Ende, H., Fernández, E., & Beck, C. F. (2001). Low-expression genes induced by nitrogen starvation and subsequent sexual differentiation in Chlamydomonas reinhardtii, isolated by the differential display technique. Planta, 213, 309–317.

    PubMed  Google Scholar 

  • Merchant, S. S., Kropat, J., Liu, B., Shaw, J., & Warakanont, J. (2012). TAG, You’re it! Chlamydomonas as a reference organism for understanding algal triacylglycerol accumulation. Current Opinion in Biotechnology, 23, 352–363.

    CAS  PubMed  Google Scholar 

  • Metting, F. B. (1996). Biodiversity and application of microalgae. Journal of Industrial Microbiology and Biotechnology, 17, 477–489.

    CAS  Google Scholar 

  • Michielsen, M. J. F., Meijer, E. A., Wijffels, R. H., Tramper, J., & Beeftink, H. H. (1998). Kinetics of d-malate production by permeabilized Pseudomonas pseudoalcaligenes. Enzyme and Microbial Technology, 22, 621–628.

    CAS  Google Scholar 

  • Miller, R., Wu, G., Deshpande, R. R., Vieler, A., Gärtner, K., Li, X., Moellering, E. R., Zäuner, S., Cornish, A. J., Liu, B., Bullard, B., Sears, B. B., Kuo, M. H., Hegg, E. L., Shachar-Hill, Y., Shiu, S. H., & Benning, C. (2010). Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism. Plant Physiology, 154, 1737–1752.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Min, S. K., Yoon, G. H., Joo, J. H., Sim, S. J., & Shin, H. S. (2014). Mechanosensitive physiology of Chlamydomonas reinhardtii under direct membrane distortion. Scientific Reports, 4, 4675.

    PubMed  PubMed Central  Google Scholar 

  • Moellering, E. R., & Benning, C. (2010). RNA interference silencing of a major lipid droplet protein affects lipid droplet size in Chlamydomonas reinhardtii. Eukaryotic Cell, 9, 97–106.

    CAS  PubMed  Google Scholar 

  • Molloy, C. J., & Syrett, P. J. (1988). Interrelationships between uptake of urea and uptake of ammonium by microalgae. Journal of Experimental Marine Biology and Ecology, 118, 85–95.

    Google Scholar 

  • Moon, M., Kim, C. W., Park, W. K., Yoo, G., Choi, Y., & Yang, J. W. (2013). Mixotrophic growth with acetate or volatile fatty acids maximizes growth and lipid production in Chlamydomonas reinhardtii. Algal Research, 2, 352–357.

    Google Scholar 

  • Moroney, J. V., & Ynalvez, R. A. (2007). Proposed carbon dioxide concentrating mechanism in Chlamudomonas reinhardtii. Eukaryotic Cell, 6, 1251–1259.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nigam, S., Prakash Rai, M., & Sharma, R. (2011). Effect of nitrogen on growth and lipid content of Chlorella pyrenoidosa. American Journal of Biochemistry and Biotechnology, 7, 126–131.

    Google Scholar 

  • Park, J. J., Wang, H., Gargouri, M., Deshpande, R. R., Skepper, J. N., Holguin, F. O., Juergens, M. T., Shachar-Hill, Y., Hicks, L. M., & Gang, D. R. (2015). The response of Chlamydomonas reinhardtii to nitrogen deprivation: A systems biology analysis. The Plant Journal, 81, 611–624.

    CAS  PubMed  Google Scholar 

  • Perrine, Z., Negi, S., & Sayre, R. T. (2012). Optimization of photosynthetic light energy utilization by microalgae. Algal Research, 1(2), 134–142.

    Google Scholar 

  • Philipps, G., Happe, T., & Hemschemeier, A. (2012). Nitrogen deprivation results in photosynthetic hydrogen production in Chlamydomonas reinhardtii. Planta, 235, 729–745.

    CAS  PubMed  Google Scholar 

  • Porra, R. J., Thompson, W., & Kriedemann, P. E. (1989). Determination of accurate extinction coefficients and simultaneous-equations for assaying chlorophyll-a and chlorophyll-b extracted with 4 different solvents—Verification of the concentration of chlorophyll standards by atomic-absorption spectroscopy. Biochimica et Biophysica Acta, 975, 384–394.

    CAS  Google Scholar 

  • Recht, L., Töpfer, N., Batushansky, A., Sikron, N., Gibon, Y., Fait, A., Nikoloski, Z., Boussiba, S., & Zarka, A. (2014). Metabolite profiling and integrative modeling reveal metabolic constraints for carbon partitioning under nitrogen starvation in the green algae Haematococcus pluvialis. Journal of Biological Chemistry, 289, 30387–30403.

    CAS  PubMed  Google Scholar 

  • Remacle, C., Eppe, G., Coosemans, N., Fernandez, E., Vigeolas, H. (2014) Combined intracellular nitrate and NIT2 effects on storage carbohydrate metabolism in Chlamydomonas. Journal of Experimental Botany, 65(1), 23–33.

    CAS  PubMed  Google Scholar 

  • Rocha, R. P., Machado, M., Vaz, M. G. M. V., Vinson, C. C., Leite, M., Richard, R., Mendes, L. B. B., Araújo, W. L., Caldana, C., Martins, M. A., Williams, T. C. R., & Nunes-Nesi, A. (2017). Exploring the metabolic and physiological diversity of native microalgal strains (Chlorophyta) isolated from tropical freshwater reservoirs. Algal Research, 28, 139–150.

    Google Scholar 

  • Salas-Montantes, C. J., González-Ortega, O., Ochoa-Alfaro, A. E., et al. (2018). Lipid accumulation during nitrogen and sulfur starvation in Chlamydomonas reinhardtii overexpressing a transcription factor. Journal of Applied Phycology, 30, 1721.

    CAS  Google Scholar 

  • Sanz-Luque, E., Chamizo-Ampudia, A., Llamas, A., Galvan, A., & Fernandez, E. (2015). Understanding nitrate assimilation and its regulation in microalgae. Frontiers in Plant Science, 6, 899.

    PubMed  PubMed Central  Google Scholar 

  • Schmollinger, S., Mühlhaus, T., Boyle, N. R., Casero, D., Mettler, T., Moseley, J. L., Kropat, J., Sommer, F., Strenkert, D., Hemme, D., Pellegrini, M., Grossman, A. R., Stitt, M., Schroda, M., & Merchant, S. S. (2014). Nitrogen-sparing mechanisms in Chlamydomonas affect the transcriptome, the proteome, and photosynthetic metabolism. The Plant Cell, 26, 1410–1435.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scragg, A., Illman, A., Carden, A., & Shales, S. (2002). Growth of microalgae with increased calorific values in a tubular bioreactor. Biomass and Bioenergy, 23, 67–73.

    CAS  Google Scholar 

  • Siaut, M., Cuiné, S., Cagnon, C., Fessler, B., Nguyen, M., Carrier, P., Beyly, A., Beisson, F., Triantaphylidès, C., Li-Beisson, Y., & Peltier, G. (2011). Oil accumulation in the model green alga Chlamydomonas reinhardtii: Characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnology, 11, 7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siegfried, B. R., Ruckemann, H., & Stumpf, G. (1984). Method for the determination of organic acids in silage by high performance liquid chromatography. Landwirtschaftliche Forschung, 37, 298.

    CAS  Google Scholar 

  • Solomon, C. M., Collier, J. L., Berg, G. M., & Glibert, P. M. (2010). Role of urea in microbial metabolism in aquatic systems: A biochemical and molecular review. Aquatic Microbial Ecology, 59, 67–88.

    Google Scholar 

  • Song, P., Li, L., & Liu, J. (2013). Proteomic analysis in nitrogen-deprived Isochrysis galbana during lipid accumulation. PLoS ONE, 8, 82188.

    Google Scholar 

  • Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101, 87–96.

    CAS  PubMed  Google Scholar 

  • Stacklies, W., Redestig, H., Scholz, M., Walther, D., & Selbig, J. (2007). PCA methods—A bioconductor package providing PCA methods for incomplete data. Bioinformatics, 23, 1164–1167.

    CAS  PubMed  Google Scholar 

  • Strope, P. K., Nickerson, K. W., Harris, S. D., & Moriyama, E. N. (2011). Molecular evolution of urea amidolyase and urea carboxylase in fungi. BMC Evolutionary Biology, 11, 80.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor, M. W., Barr, N. G., Grant, C. M., & Rees, T. A. V. (2006). Changes in amino acid composition of Ulva intestinalis (Chlorophyceae) following addition of ammonium or nitrate. Phycologia, 45, 270–276.

    Google Scholar 

  • Teoh, M. L., Chu, W. L., Marchant, H., & Phang, S. M. (2004). Influence of culture temperature on the growth, biochemical composition and fatty acid profiles of six Antarctic microalgae. Journal of Applied Phycology, 16, 421–430.

    CAS  Google Scholar 

  • Tovar-Méndez, A., Miernyk, J. A., & Randall, D. D. (2003). Regulation of pyruvate dehydrogenase complex activity in plant cells. European Journal of Biochemistry, 270, 1043–1049.

    PubMed  Google Scholar 

  • Urzica, E. I., Vieler, A., Hong-Hermesdorf, A., Page, M. D., Casero, D., Gallaher, S. D., Kropat, J., Pellegrini, M., Benning, C., & Merchant, S. S. (2013). Remodeling of membrane lipids in iron-starved Chlamydomonas. Journal of Biological Chemistry, 288, 30246–30258.

    CAS  PubMed  Google Scholar 

  • Wang, W. H., Köhler, B., Cao, F. Q., & Liu, L. H. (2008). Molecular and physiological aspects of urea transport in higher plants. Plant Science, 175, 467–477.

    CAS  Google Scholar 

  • Wang, Z. T., Ullrich, N., Joo, S., Waffenschmidt, S., & Goodenough, U. (2009). Algal lipid bodies: Stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryotic Cell, 8, 1856–1868.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wase, N., Black, P. N., Stanley, B. A., & Dirusso, C. C. (2014). Integrated quantitative analysis of nitrogen stress response in Chlamydomonas reinhardtii using metabolite and protein profiling. Journal of Proteome Research, 13, 1373–1396.

    CAS  PubMed  Google Scholar 

  • Wei, L., Derrien, B., Gautier, A., Houille-Vernes, L., Boulouis, A., Saint-Marcoux, D., Malnoë, A., Rappaport, F., de Vitry, C., Vallon, O., Choquet, Y., & Wollman, F. A. (2014). Nitric oxide-triggered remodeling of chloroplast bioenergetics and thylakoid proteins upon nitrogen starvation in Chlamydomonas reinhardtii. The Plant Cell, 26, 353–372.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Winck, F. V., Melo, D. O. P., & Barrios, A. F. G. (2013). Carbon acquisition and accumulation in microalgae Chlamydomonas: Insights from “omics” approaches. Journal of Proteomics, 94, 207–218.

    CAS  PubMed  Google Scholar 

  • Work, V. H., Radakovits, R., Jinkerson, R. E., Meuser, J. E., Elliott, L. G., Vinyard, D. J., Laurens, L. M. L., Dismuker, G. C., & Posewitz, M. C. (2010). Increased lipid accumulation in the Chlamydomonas reinhardtii sta7-10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains. Eukaryotic Cell, 9, 1251–1261.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Worley, B., & Powers, R. (2013). Multivariate analysis in metabolomics. Current Metabolomics, 1, 92–107.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao, D. D., Xiao, W. F., & Ya, J. L. (2011). The effects of nutritional restriction on neutral lipid accumulation in Chlamydomonas and Chlorella. African Journal of Microbiology Research, 5, 260–270.

    Google Scholar 

  • Xu, H., Miao, X., & Wu, Q. (2006). High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. Journal of Biotechnology, 126, 499–507.

    CAS  PubMed  Google Scholar 

  • Zhan, J., Hong, Y., & Hu, H. (2016). Effects of nitrogen sources and C/N ratios on the lipid-producing potential of Chlorella sp. Journal of Microbiology and Biotechnology, 26, 1290–1302.

    CAS  PubMed  Google Scholar 

  • Zhang, X. W., Chen, F., & Johns, M. R. (1999). Kinetic models for heterotrophic growth of Chlamydomonas reinhardtii in batch and fed-batch cultures. Process Biochemistry, 35, 385–389.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) [Grant APQ-01357-14, APQ-01671-15 and RED-00053-16] and Max Planck Society to WLA. Research fellowships granted by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) to ANN, WLA, MM, and ASM and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) to ADB and RMR are also gratefully acknowledged. M.G.M.V.V. was supported by scholarships from CAPES/Fundação de Amparo à Pesquisa do estado de Minas Gerais (FAPEMIG) (BPD-00514-14) and CAPES (PNPD-1638006). The authors wish to thank the NUBIOMOL-UFV for providing the facilities for the analysis of this work.

Author information

Authors and Affiliations

Authors

Contributions

ADB and ANN conceived and designed research. ADB, RMR, ASM, BAS and PFG conducted experiments. ADB, MM and MGMVV analyzed data. ADB and ANN wrote the manuscript. LC and WLA revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Adriano Nunes-Nesi.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Research involving human and animal participants

This article does not contain any studies with human or animal subjects.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 522 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batista, A.D., Rosa, R.M., Machado, M. et al. Increased urea availability promotes adjustments in C/N metabolism and lipid content without impacting growth in Chlamydomonas reinhardtii. Metabolomics 15, 31 (2019). https://doi.org/10.1007/s11306-019-1496-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-019-1496-3

Keywords

Navigation