Skip to main content
Log in

Urinary Metabolomic Signatures in Obstructive Sleep Apnea through Targeted Metabolomic Analysis: A Pilot Study

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Obstructive sleep apnea (OSA) is very common sleep problem, and it is associated with serious morbidities such as cardiovascular diseases and metabolic diseases. Overnight polysomnography (PSG) is the gold standard test for OSA, but it is expensive and requires specific facilities and equipment. Thus, novel screening methods are needed for effective diagnosis and follow-up in OSA.

Objectives

The aims of the study were to investigate the urinary metabolic signatures and identify potential urine markers for OSA using a mass spectrometry (MS)-based assay for targeted metabolomics.

Methods

Urine samples were collected from 48 male subjects who visited a sleep clinic for suspicious OSA. All underwent overnight in-laboratory polysomnography. The Biocrates AbsoluteIDQ p180 kit was used for targeted metabolomics.

Results

Among the 86 metabolites quantified, three acylcarnitines, one biogenic amine, two glycerophospholipids, and two sphingomyelins were differently expressed in OSA patients [apnea-hypopnea index (AHI) ≥5] compared with control groups (AHI <5 and/or simple snoring with no other sleep disorders). Additional partial correlation and multivariate logistic regression analysis revealed that long-chain acylcarnitine C14:1, symmetric dimethylarginine, and sphingomyelin C18:1 might be potential biomarkers for OSA. Receiver operating characteristic analysis showed favorable predictive properties of these metabolites. Furthermore, a combination of the metabolites exceeding cutoff values yielded further improved sensitivity or specificity.

Conclusions

MS-based targeted metabolomics identified specific classes of urinary metabolites that were up-regulated in OSA patients. Further assessments in large populations are required to clarify the screening values of these metabolite markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams, S. H., Hoppel, C. L., Lok, K. H., Zhao, L., Wong, S. W., Minkler, P. E., et al. (2009). Plasma acylcarnitine profiles suggest incomplete long-chain fatty acid beta-oxidation and altered tricarboxylic acid cycle activity in type 2 diabetic African-American women. The Journal of nutrition, 139(6), 1073–1081. doi:10.3945/jn.108.103754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aguer, C., McCoin, C. S., Knotts, T. A., Thrush, A. B., Ono-Moore, K., McPherson, R., et al. (2015). Acylcarnitines: potential implications for skeletal muscle insulin resistance. The FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 29(1), 336–345. doi:10.1096/fj.14-255901.

    Article  CAS  Google Scholar 

  • Bouatra, S., Aziat, F., Mandal, R., Guo, A. C., Wilson, M. R., Knox, C., et al. (2013). Thue human urine metabolome. PLoS ONE, 8(9), e73076. doi:10.1374/jn.pone.0073076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruder, E. D., & Raff, H. (2010). Cardiac and plasma lipid profiles in response to acute hypoxia in neonatal and young adult rats. Lipids in Health and Disease, 9, 3. doi:10.1186/1476-511x-9-3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Davies, S. K., Ang, J. E., Revell, V. L., Holmes, B., Mann, A., Robertson, F. P., et al. (2014). Effect of sleep deprivation on the human metabolome. Proceedings of the National Academy of Sciences of the United States of America, 111(29), 10761–10766. doi:10.1073/pnas.1402663111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Luca Canto, G., Pacheco-Pereira, C., Aydinoz, S., Major, P. W., Flores-Mir, C., & Gozal, D. (2015). Biomarkers associated with obstructive sleep apnea and morbidities: A scoping review. Sleep Medicine, 16(3), 347–357. doi:10.1016/j.sleep.2014.12.007.

    Article  PubMed  Google Scholar 

  • Hanamatsu, H., Ohnishi, S., Sakai, S., Yuyama, K., Mitsutake, S., Takeda, H., et al. (2014). Altered levels of serum sphingomyelin and ceramide containing distinct acyl chains in young obese adults. Nutrition Diabetes, 4, e141. doi:10.1038/nutd.2014.38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iber, C., Ancoli-Israel, S., Chesson, A. L., & Quan, S. F. (2007). The AASM manual for the scoring of sleep and associated events: rules, terminology, and technical specifications (1st edn.). Westchester, IL: American Academy of Sleep Medicine.

    Google Scholar 

  • Ip, M. S., Lam, B., Chan, L. Y., Zheng, L., Tsang, K. W., Fung, P. C., et al. (2000). Circulating nitric oxide is suppressed in obstructive sleep apnea and is reversed by nasal continuous positive airway pressure. American Journal of Respiratory and Critical Care Medicine, 162(6), 2166–2171. doi:10.1164/ajrccm.162.6.2002126.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, X. C., Paultre, F., Pearson, T. A., Reed, R. G., Francis, C. K., Lin, M., et al. (2000). Plasma sphingomyelin level as a risk factor for coronary artery disease. ArterioSclerosis, Thrombosis, and Vascular Biology, 20(12), 2614–2618.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J., Hakim, F., Kheirandish-Gozal, L., & Gozal, D. (2011). Inflammatory pathways in children with insufficient or disordered sleep. Respiratory Physiology & Neurobiology, 178(3), 465–474. doi:10.1016/j.resp.2011.04.024.

    Article  CAS  Google Scholar 

  • Kinnunen, P. K., & Holopainen, J. M. (2002). Sphingomyelinase activity of LDL: A link between atherosclerosis, ceramide, and apoptosis? Trends in Cardiovascular Medicine, 12(1), 37–42.

    Article  CAS  PubMed  Google Scholar 

  • Koves, T. R., Li, P., An, J., Akimoto, T., Slentz, D., Ilkayeva, O., et al. (2005). Peroxisome proliferator-activated receptor-gamma co-activator 1alpha-mediated metabolic remodeling of skeletal myocytes mimics exercise training and reverses lipid-induced mitochondrial inefficiency. The Journal of Biological Chemistry, 280(39), 33588–33598. doi:10.1074/jbc.M507621200.

    Article  CAS  PubMed  Google Scholar 

  • Lou, B. S., Wu, P. S., Liu, Y., & Wang, J. S. (2014). Effects of acute systematic hypoxia on human urinary metabolites using LC-MS-based metabolomics. High Altitude Medicine & Biology, 15(2), 192–202, doi:10.1089/ham.2013.1130.

    Article  CAS  Google Scholar 

  • Lu, T. M., Chung, M. Y., Lin, C. C., Hsu, C. P., & Lin, S. J. (2011). Asymmetric dimethylarginine and clinical outcomes in chronic kidney disease. Clinical Journal of the American Society of Nephrology, 6(7), 1566–1572. doi:10.2215/cjn.08490910.

    Article  CAS  PubMed  Google Scholar 

  • Madsen, R., Lundstedt, T., & Trygg, J. (2010). Chemometrics in metabolomics–a review in human disease diagnosis. Analytica Chimica Acta, 659(1–2), 23–33. doi:10.1016/j.aca.2009.11.042.

    Article  CAS  PubMed  Google Scholar 

  • Mai, M., Tonjes, A., Kovacs, P., Stumvoll, M., Fiedler, G. M., & Leichtle, A. B. (2013). Serum levels of acylcarnitines are altered in prediabetic conditions. PLoS ONE, 8(12), e82459. doi:10.1371/journal.pone.0082459.

    Article  PubMed  PubMed Central  Google Scholar 

  • Otusbo, C., Bharathi, S., Uppala, R., Ilkayeva, O. R., Wang, D., McHugh, K., et al. (2015). Long-chain acylcarnitines reduce lung function by inhibiting pulmonary surfactant. The Journal of Biological Chemistry, 290(39), 23897–23904. doi:10.1074/jbc.M115.655837.

    Article  Google Scholar 

  • Roberts, L. D., Souza, A. L., Gerszten, R. E., & Clish, C. B. (2012). Targeted metabolomics. Current Protocols in Molecular Biology. doi:10.1002/0471142727.mb3002s98. Chapter 30, Unit 30.32.31–24.

    PubMed  PubMed Central  Google Scholar 

  • Romisch-Margel, W., Prehn, C., Bogumil, R., Rohring, C., Suhre, K., & Adamsk, J. (2012). Procedure for tissue sample preparation and metabolite extraction for high-throughput targeted metabolomics. Metabolomics, 8, 133–142. doi:10.1007/s11306-011-0293-4.

    Article  Google Scholar 

  • Rutkowsky, J. M., Knotts, T. A., Ono-Moore, K. D., McCoin, C. S., Huang, S., Schneider, D., et al. (2014). Acylcarnitines activate proinflammatory signaling pathways. American Journal of Physiology. Endocrinology and Metabolism, 306(12), E1378–E1387. doi:10.1152/ajpendo.00656.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlitt, A., Blankenberg, S., Yan, D., von Gizycki, H., Buerke, M., Werdan, K., et al. (2006). Further evaluation of plasma sphingomyelin levels as a risk factor for coronary artery disease. Nutrition & Metabolism, 3, 5. doi:10.1186/1743-7075-3-5.

    Article  Google Scholar 

  • Schulz, R., Schmidt, D., Blum, A., Lopes-Ribeiro, X., Lucke, C., Mayer, K., et al. (2000). Decreased plasma levels of nitric oxide derivatives in obstructive sleep apnoea: Response to CPAP therapy. Thorax, 55(12), 1046–1051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwedhelm, E., Wallaschofski, H., Atzler, D., Dorr, M., Nauck, M., Volker, U., et al. (2014). Incidence of all-cause and cardiovascular mortality predicted by symmetric dimethylarginine in the population-based study of health in pomerania. PLoS ONE, 9(5), e96875. doi:10.1371/journal.pone.0096875.

    Article  PubMed  PubMed Central  Google Scholar 

  • Strobel, J., Mieth, M., Endress, B., Auge, D., Konig, J., Fromm, M. F., et al. (2012). Interaction of the cardiovascular risk marker asymmetric dimethylarginine (ADMA) with the human cationic amino acid transporter 1 (CAT1). Journal of Molecular and Cellular Cardiology, 53(3), 392–400. doi:10.1016/j.yjmcc.2012.06.002.

    Article  CAS  PubMed  Google Scholar 

  • Tai, E. S., Tan, M. L., Stevens, R. D., Low, Y. L., Muehlbauer, M. J., Goh, D. L., et al. (2010). Insulin resistance is associated with a metabolic profile of altered protein metabolism in Chinese and Asian-Indian men. Diabetologia, 53(4), 757–767. doi:10.1007/s00125-009-1637-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinayavekhin, N., & Saghatelian, A. (2010). Untargeted metabolomics. Current Protocols in Molecular Biology. doi:10.1002/0471142727.mb3001s90. Chapter 30, Unit 30.31.31–24.

    PubMed  Google Scholar 

  • Xia, J., Sinelnikov, I. V., Han, B., & Wishart, D. S. (2015). MetaboAnalyst 3.0-making metabolomics more meaningful. Nucleic Acids Research, 43(W1), W251–7, doi:10.1093/nar/gkv380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamagishi, K., Ohira, T., Nakano, H., Bielinski, S. J., Sakurai, S., Imano, H., et al. (2010). Cross-cultural comparison of the sleep-disordered breathing prevalence among Americans and Japanese. The European Respiratory Journal: Official Journal of the European Society for Clinical Respiratory Physiology, 36(2), 379–384. doi:10.1183/09031936.00118609.

    Article  CAS  Google Scholar 

  • Young, T., Palta, M., Dempsey, J., Skatrud, J., Weber, S., & Badr, S. (1993). The occurrence of sleep-disordered breathing among middle-aged adults. The New England Journal of Medicine, 328(17), 1230–1235. doi:10.1056/nejm199304293281704.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, W., Kollmeyer, J., Symolon, H., Momin, A., Munter, E., Wang, E., et al. (2006). Ceramides and other bioactive sphingolipid backbones in health and disease: lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy. Biochimica et Biophysica Acta, 1758(12), 1864–1884. doi:10.1016/j.bbamem.2006.08.009.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The English in this document has been checked by at least two professional editors, both native speakers of English. For a certificate, please see: http://www.textcheck.com/certificate/SPbO3y.

Authors contributions

KC, J-WP, C-SR, and H-WS participated in study conception and design. I-HH, C-SR, and H-WS supported the clinical study and sample collection. ML and DS supported sample management and clinical data acquisition. KC, J-YC, DWY, and H-WS participated in the acquisition of data and interpretation of results from the metabolomic analysis. KC and DWY drafted the article, and all authors reviewed and revised the manuscript.

Funding

This work was supported by a grant from the Korean Health Technology R&D Project, Ministry of Health and Welfare, Republic of Korea (HI15C2310) and by a National Research Foundation of Korea grant funded by the Korea government (MEST) (NRF-2014R1A2A2A01005541). D.W.Y. received a scholarship from the BK21-plus education program provided by the National Research Foundation of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joo-Youn Cho or Hyun-Woo Shin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest with the contents of this article.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration. The Institutional Review Board at Seoul National University Hospital reviewed and approved the study protocol.

Informed Consent

Informed consent for the use of specimens was obtained from all individual participants included in the study.

Additional information

Kumsun Cho and Dae Wui Yoon have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11306_2017_1216_MOESM1_ESM.tif

Supplementary Figure 1—Comparison of hexoses levels according to OSA severity. All levels were corrected with corresponding urinary creatinine concentrations. Data are represented as mean ± SD (TIF 242 KB)

11306_2017_1216_MOESM2_ESM.tif

Supplementary Figure 2—Multivariate analysis between control and OSA groups. A, principal component analysis (PCA) plot; B, partial least squares discriminant analysis (PLS-DA) plot highlight the separation between controls (green) and OSA patients (red); C, variable importance in projection (VIP) plot. The most discriminating metabolites are shown in descending order of importance. The color boxes indicate whether metabolite concentration is increased (red) or decreased (green) in OSA vs. controls (TIF 766 KB)

11306_2017_1216_MOESM3_ESM.tif

Supplementary Figure 3—Identification of metabolites with significant changes in expression by significance analysis of microarray (SAM). A, the relation between delta and false discovery rate (FDR) (left), and delta and the number of significant metabolites (right). B, resultant metabolites from SAM with a delta value of 0.8. The significant variables are highlighted in green (TIF 643 KB)

Supplementary material 4 (DOCX 25 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, K., Yoon, D.W., Lee, M. et al. Urinary Metabolomic Signatures in Obstructive Sleep Apnea through Targeted Metabolomic Analysis: A Pilot Study. Metabolomics 13, 88 (2017). https://doi.org/10.1007/s11306-017-1216-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-017-1216-9

Keywords

Navigation