Skip to main content
Log in

A metabolomic approach to characterize the acid-tolerance response in Sinorhizobium meliloti

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Sinorhizobium meliloti establishes a symbiosis with Medicago species where the bacterium fixes atmospheric nitrogen for plant nutrition. To achieve a successful symbiosis, however, both partners need to withstand biotic and abiotic stresses within the soil, especially that of excess acid, to which the Medicago-Sinorhizobium symbiotic system is widely recognized as being highly sensitive.

Objective

To cope with low pH, S. meliloti can undergo an acid-tolerance response (ATR(+)) that not only enables a better survival but also constitutes a more competitive phenotype for Medicago sativa nodulation under acid and neutral conditions. To characterize this phenotype, we employed metabolomics to investigate the biochemical changes operating in ATR(+) cells.

Methods

A gas chromatography/mass spectrometry approach was used on S. meliloti 2011 cultures showing ATR(+) and ATR(−) phenotypes. After an univariate and multivariate statistical analysis, enzymatic activities and/or reserve carbohydrates characterizing ATR(+) phenotypes were determined.

Results

Two distinctive populations were clearly defined in cultures grown in acid and neutral pH based on the metabolites present. A shift occurred in the carbon-catabolic pathways, potentially supplying NAD(P)H equivalents for use in other metabolic reactions and/or for maintaining intracellular-pH homeostasis. Furthermore, among the mechanisms related to acid resistance, the ATR(+) phenotype was also characterized by lactate production, envelope modification, and carbon-overflow metabolism.

Conclusions

Acid-challenged S. meliloti exhibited several changes in different metabolic pathways that, in specific instances, could be identified and related to responses observed in other bacteria under various abiotic stresses. Some of the observed changes included modifications in the pentose-phosphate pathway (PPP), the exopolysaccharide biosynthesis, and in the myo-inositol degradation intermediates. Such modifications are part of a metabolic adaptation in the rhizobia that, as previously reported, is associated to improved phenotypes of acid tolerance and nodulation competitiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bandara, A. B., Contreras, A., Contreras-Rodriguez, A., Martins, A. M., Dobrean, V., Poff-Reichow, S., et al. (2007). Brucella suis urease encoded by ure 1 but not ure 2 is necessary for intestinal infection of BALB/c mice. BMC Microbiology, 7(1), 57.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barsch, A., Patschkowski, T., & Niehaus, K. (2004). Comprehensive metabolite profiling of Sinorhizobium meliloti using gas chromatography-mass spectrometry. Functional & Integrative Genomics, 4(4), 219–230.

    Article  CAS  Google Scholar 

  • Bore, E., Langsrud, S., Langsrud, O., Rode, T. M., & Holck, A. (2007). Acid-shock responses in Staphylococcus aureus investigated by global gene expression analysis. Microbiology, 153(7), 2289–2303.

    Article  CAS  PubMed  Google Scholar 

  • Caetano-Anollés, G., Lagares, A., & Favelukes, G. (1989). Adsorption of Rhizobium meliloti to alfalfa roots: Dependence on divalent cations and pH. Plant and Soil, 117(1), 67–74.

    Article  Google Scholar 

  • Capela, D., Barloy-Hubler, F., Gouzy, J., Bothe, G., Ampe, F., Batut, J., et al. (2001). Analysis of the chromosome sequence of the legume symbiont Sinorhizobium meliloti strain 1021. Proceedings of the National Academy of Sciences of the United States of America, 98(17), 9877–9882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, E., Fisher, R., Perovich, V., Sabio, E., & Long, S. (2009). Identification of direct transcriptional target genes of ExoS/ChvI two-component signaling in Sinorhizobium meliloti. Journal of Bacteriology, 191, 6833–6842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, Y. Y., Weaver, C. A., & Burne, R. A. (2000). Dual functions of Streptococcus salivarius urease. Journal of Bacteriology, 182(16), 4667–4669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • da Costa, M. S., Santos, H., & Galinski, E. A. (1998). An overview of the role and diversity of compatible solutes in bacteria and Archaea. Advances in Biochemical Engineering/Biotechnology, 61, 117–153.

    Article  PubMed  Google Scholar 

  • Dilworth, M. J., Howieson, J. G., Reeve, W. G., Tiwari, R. P., & Glenn, A. R. (2001). Acid tolerance in legume root nodule bacteria and selecting for it. Australian Journal of Experimental Agriculture, 41, 435–446.

    Article  CAS  Google Scholar 

  • Dilworth, M. J., Rynne, F. G., Castelli, J. M., Vivas-Marfisi, A. I., & Glenn, A. R. (1999). Survival and exopolysaccharide production in Sinorhizobium meliloti WSM419 are affected by calcium and low pH. Microbiology, 145, 1585–1593.

    Article  CAS  PubMed  Google Scholar 

  • Draghi, W. O., Del Papa, M. F., Hellweg, C., Watt, S. A., Watt, T. F., Barsch, A., et al. (2016). A consolidated analysis of the physiologic and molecular responses induced under acid stress in the legume-symbiont model-soil bacterium Sinorhizobium meliloti. Scientific Reports, 6, 29278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Draghi, W. O., Del Papa, M. F., Pistorio, M., Lozano, M., de Los Angeles Giusti, M., Torres Tejerizo, G. A., et al. (2010). Cultural conditions required for the induction of an adaptive acid-tolerance response (ATR) in Sinorhizobium meliloti and the question as to whether or not the ATR helps rhizobia improve their symbiosis with alfalfa at low pH. FEMS Microbiology Letters, 302(2), 123–130.

    Article  CAS  PubMed  Google Scholar 

  • Dunn, M. F. (2015). Key roles of microsymbiont amino acid metabolism in rhizobia-legume interactions. Critical reviews in microbiology, 41(4), 411–451.

    Article  CAS  PubMed  Google Scholar 

  • Encarnacion, S., Dunn, M., Willms, K., & Mora, J. (1995). Fermentative and aerobic metabolism in Rhizobium etli. Journal of Bacteriology, 177(11), 3058–3066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans, C. G. T., Herbert, D., & Tempest, D. W. (1970). The continuous cultivation of micro-organisms. II. Construction of a chemostat. Methods in Microbiology, 2, 277–327.

    Article  CAS  Google Scholar 

  • Ferguson, B. J., Lin, M. H., & Gresshoff, P. M. (2013). Regulation of legume nodulation by acidic growth conditions. Plant Signaling & Behavior, 8(3), e23426.

    Article  Google Scholar 

  • Ferla, M. P., & Patrick, W. M. (2014). Bacterial methionine biosynthesis. Microbiology, 160, 1571–1584.

    Article  CAS  PubMed  Google Scholar 

  • Fry, J., Wood, M., & Poole, P. S. (2001). Investigation of myo-inositol catabolism in Rhizobium leguminosarum bv. viciae and its effect on nodulation competitiveness. Molecular Plant-Microbe Interactions 14(8), 1016–1025.

    Article  CAS  PubMed  Google Scholar 

  • Fuhrer, T., Fischer, E., & Sauer, U. (2005). Experimental identification and quantification of glucose metabolism in seven bacterial species. Journal of Bacteriology, 187(5), 1581–1590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Futai, M. (1973). Membrane d-lactate dehydrogenase from Escherichia coli. Purification and properties. Biochemistry, 12(13), 2468–2474.

    Article  CAS  PubMed  Google Scholar 

  • Gage, D. J. (2004). Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiology and Molecular Biology Reviews, 68(2), 280–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geddes, B. A., González, J. E., & Oresnik, I. J. (2014). Exopolysaccharide production in response to medium acidification is correlated with an increase in competition for nodule occupancy. Molecular Plant-Microbe Interactions, 27(12), 1307–1317.

    Article  PubMed  Google Scholar 

  • Geddes, B. A., & Oresnik, I. J. (2014). Physiology, genetics, and biochemistry of carbon metabolism in the alphaproteobacterium Sinorhizobium meliloti. Canadian Journal of Microbiology, 60(8), 491–507.

    Article  CAS  PubMed  Google Scholar 

  • Geiger, O., Rohrs, V., Weissenmayer, B., Finan, T. M., & Thomas-Oates, J. E. (1999). The regulator gene phoB mediates phosphate stress-controlled synthesis of the membrane lipid diacylglyceryl-N,N,N-trimethylhomoserine in Rhizobium (Sinorhizobium) meliloti. Molecular microbiology, 32(1), 63–73.

    Article  CAS  PubMed  Google Scholar 

  • Gibson, K. E., Kobayashi, H., & Walker, G. C. (2008). Molecular determinants of a symbiotic chronic infection. Annual Review of Genetics, 42(1), 413–441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glenn, A. R., & Dilworth, M. J. (1994). The life of root nodule bacteria in the acidic underground. FEMS Microbiology Letters, 123(1–2), 1–9.

    Article  CAS  Google Scholar 

  • Glenn, A. R., Reeve, W. G., Tiwari, R. P., & Dilworth, M. J. (1999). Acid tolerance in root nodule bacteria. Novartis Foundation Symposium, 221, 112–126.

    CAS  PubMed  Google Scholar 

  • Graham, S. F., Chevallier, O. P., Kumar, P., Türkoğlu, O., & Bahado-Singh, R. O. (2016). High resolution metabolomic analysis of ASD human brain uncovers novel biomarkers of disease. Metabolomics, 12(4), 62.

    Article  Google Scholar 

  • Hellweg, C., Puhler, A., & Weidner, S. (2009). The time course of the transcriptomic response of Sinorhizobium meliloti 1021 following a shift to acidic pH. BMC Microbiology, 9(1), 37.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hunke, S., Keller, R., & Muller, V. S. (2012). Signal integration by the Cpx-envelope stress system. FEMS Microbiology Letters, 326(1), 12–22.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, G., Krishnan, A. H., Kim, Y. W., Wacek, T. J., & Krishnan, H. B. (2001). A functional myo-inositol dehydrogenase gene is required for efficient nitrogen fixation and competitiveness of Sinorhizobium fredii USDA191 to nodulate soybean (Glycine max [L.] Merr.). Journal of Bacteriology, 183(8), 2595–2604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones, K. M., Kobayashi, H., Davies, B. W., Taga, M. E., & Walker, G. C. (2007). How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model. Nature Reviews Microbiology, 5(8), 619–633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kistler, W. S., & Lin, E. C. (1971). Anaerobic l-glycerophosphate dehydrogenase of Escherichia coli: Its genetic locus and its physiological role. Journal of Bacteriology, 108(3), 1224–1234.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kochian, L. V., Hoekenga, O. A., & Piñeros, M. A. (2004). How do crop plants tolerate acid soils? Mechanisms of aluminium tolerance and phosphorous efficiency. Annual Review of Plant Biology, 55(1), 459–493.

    Article  CAS  PubMed  Google Scholar 

  • Kohler, P. R., Zheng, J. Y., Schoffers, E., & Rossbach, S. (2010). Inositol catabolism, a key pathway in Sinorhizobium meliloti for competitive host nodulation. Applied and Environmental Microbiology, 76(24), 7972–7980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Law, J. H., & Slepecky, R. A. (1961). Assay of Poly-beta-hydroxybutyric acid. Journal of Bacteriology, 82(1), 33–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leonardo, M. R., Dailly, Y., & Clark, D. P. (1996). Role of NAD in regulating the adhE gene of Escherichia coli. Journal of Bacteriology, 178(20), 6013–6018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lund, P., Tramonti, A., & De Biase, D. (2014). Coping with low pH: molecular strategies in neutralophilic bacteria. FEMS Microbiology Reviews, 38(6), 1091–1125.

    Article  CAS  PubMed  Google Scholar 

  • Mendrygal, K. E., & Gonzalez, J. E. (2000). Environmental regulation of exopolysaccharide production in Sinorhizobium meliloti. Journal of Bacteriology, 182(3), 599–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mobley, H. L., Island, M. D., & Hausinger, R. P. (1995). Molecular biology of microbial ureases. Microbiological Reviews, 59(3), 451–480.

    CAS  PubMed  PubMed Central  Google Scholar 

  • O’Hara, G. W., & Glenn, A. R. (1994). The adaptive acid tolerance response in root nodule bacteria and Escherichia coli. Archives of Microbiology, 161(4), 286–292.

    Article  PubMed  Google Scholar 

  • O’Hara, G. W., Goss, T. J., Dilworth, M. J., & Glenn, A. R. (1989). Maintenance of intracellular pH and acid tolerance in Rhizobium meliloti. Applied and Environmental Microbiology, 55(8), 1870–1876.

    PubMed  PubMed Central  Google Scholar 

  • Paczia, N., Nilgen, A., Lehmann, T., Gätgens, J., Wiechert, W., & Noack, S. (2012). Extensive exometabolome analysis reveals extended overflow metabolism in various microorganisms. Microbial Cell Factories, 11(1), 122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poole, P. S., Blyth, A., Reid, C. J., & Walters, K. (1994). Myo-inositol catabolism and catabolite regulation in Rhizobium leguminosarum bv. viciae. Microbiology, 140(10), 2787–2795.

    Article  CAS  Google Scholar 

  • Povolo, S., & Casella, S. (2009). Effect of poly-3-hydroxybutyrate synthase mutation on the metabolism of Ensifer (formerly Sinorhizobium) meliloti. Journal of Basic Microbiology, 49(2), 178–186.

    Article  CAS  PubMed  Google Scholar 

  • Quelas, J. I., Mongiardini, E. J., Pérez-Giménez, J., Parisi, G., & Lodeiro, A. R. (2013). Analysis of two polyhydroxyalkanoate synthases in Bradyrhizobium japonicum USDA 110. Journal of Bacteriology, 195(14), 3145–3155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reeve, W. G., Tiwari, R. P., Guerreiro, N., Stubbs, J., Dilworth, M. J., Glenn, A. R., et al. (2004). Probing for pH-regulated proteins in Sinorhizobium medicae using proteomic analysis. Journal of Molecular Microbiology and Biotechnology, 7(3), 140–147.

    Article  CAS  PubMed  Google Scholar 

  • Reeve, W. G., Tiwari, R. P., Wong, C. M., Dilworth, M. J., & Glenn, A. R. (1998). The transcriptional regulator gene phrR in Sinorhizobium meliloti WSM419 is regulated by low pH and other stresses. Microbiology, 144, 3335–3342.

    Article  CAS  PubMed  Google Scholar 

  • Riccillo, P. M., Muglia, C. I., de Bruijn, F. J., Roe, A. J., Booth, I. R., & Aguilar, O. M. (2000). Glutathione is involved in environmental stress responses in Rhizobium tropici, including acid tolerance. Journal of Bacteriology, 182(6), 1748–1753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos, M. R., Cosme, A. M., Becker, J. D., Medeiros, J. M., Mata, M. F., & Moreira, L. M. (2010). Absence of functional TolC protein causes increased stress response gene expression in Sinorhizobium meliloti. BMC Microbiology, 10, 180.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sardesai, N., & Babu, C. R. (2000). Cold stress induces switchover of respiratory pathway to lactate glycolysis in psychrotrophic Rhizobium strains. Folia MicroBiologica, 45(2), 177–182.

    Article  CAS  PubMed  Google Scholar 

  • Sohlenkamp, C., & Geiger, O. (2016). Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiology Reviews, 40(1), 133–159.

    Article  PubMed  Google Scholar 

  • Solorzano, L. (1969). Determination of ammonia in natural waters by the phenolhypochlorite method. Limnology and Oceanography, 14, 799.

    Article  CAS  Google Scholar 

  • Tavernier, P., Portais, J., Nava, S., Courtois, J., Courtois, B., & Barbotin, J. (1997). Exopolysaccharide and Poly-(beta)-Hydroxybutyrate coproduction in two Rhizobium meliloti strains. Applied and Environmental Microbiology, 63(1), 21–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari, R. P., Reeve, W. G., Dilworth, M. J., & Glenn, A. R. (1996a). Acid tolerance in Rhizobium meliloti strain WSM419 involves a two-component sensor-regulator system. Microbiology, 142, 1693–1704.

    Article  CAS  PubMed  Google Scholar 

  • Tiwari, R. P., Reeve, W. G., Dilworth, M. J., & Glenn, A. R. (1996b). An essential role for actA in acid tolerance of Rhizobium meliloti. Microbiology, 142, 601–610.

    Article  CAS  PubMed  Google Scholar 

  • Tiwari, R. P., Reeve, W. G., Fenner, B. J., Dilworth, M. J., Glenn, A. R., & Howieson, J. G. (2004). Probing for pH-regulated genes in Sinorhizobium medicae using transcriptional analysis. Journal of molecular Microbiology and Biotechnology, 7(3), 133–139.

    Article  CAS  PubMed  Google Scholar 

  • Trevelyan, W. E., Forrest, R. S., & Harrison, J. S. (1952). Determination of yeast carbohydrates with the anthrone reagent. Nature, 170(4328), 626–627.

    Article  CAS  PubMed  Google Scholar 

  • Uchino, K., Saito, T., Gebauer, B., & Jendrossek, D. (2007). Isolated poly(3-hydroxybutyrate) (PHB) granules are complex bacterial organelles catalyzing formation of PHB from acetyl coenzyme A (CoA) and degradation of PHB to acetyl-CoA. Journal of Bacteriology, 189(22), 8250–8256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinuesa, P., Neumann-Silkow, F., Pacios-Bras, C., Spaink, H. P., Martinez-Romero, E., & Werner, D. (2003). Genetic analysis of a pH-regulated operon from Rhizobium tropici CIAT899 involved in acid tolerance and nodulation competitiveness. Molecular Plant-Microbe Interactions, 16(2), 159–168.

    Article  CAS  PubMed  Google Scholar 

  • Vogt, S. L., & Raivio, T. L. (2012). Just scratching the surface: an expanding view of the Cpx envelope stress response. FEMS Microbiology Letters, 326(1), 2–11.

    Article  CAS  PubMed  Google Scholar 

  • Xia, J., Mandal, R., Sinelnikov, I. V., Broadhurst, D., & Wishart, D. S. (2012). MetaboAnalyst 2.0: a comprehensive server for metabolomic data analysis. Nucleic Acids Research, 40, W127–133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zahran, H. H. (1999). Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiology and Molecular Biology Reviews, 63(4), 968–989.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zevenhuizen, L. P. (1981). Cellular glycogen, beta-1,2,-glucan, poly beta-hydroxybutyric acid and extracellular polysaccharides in fast-growing species of Rhizobium. Antonie van Leeuwenhoek, 47(6), 481–497.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the National Science and Technology Research Council (PIP2014/0420, Consejo Nacional de Investigaciones Científicas y Técnicas—CONICET, Argentina) and National Agency for Science and Technology Promotion (PICT 2012/1719). W.O.D., M.F.D.P., F.A., M.J.L., and A.L. are members of CONICET. The authors are grateful to Dr. Donald F. Haggerty for editing the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Omar Draghi.

Ethics declarations

Conflict of interest

None of the authors have any conflict of interest to declare.

Research involving human or animal participants

This article does not contain any studies with human or animal subjects.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 520 KB)

Supplementary material 2 (DOCX 31 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Draghi, W.O., Del Papa, M.F., Barsch, A. et al. A metabolomic approach to characterize the acid-tolerance response in Sinorhizobium meliloti . Metabolomics 13, 71 (2017). https://doi.org/10.1007/s11306-017-1210-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-017-1210-2

Keywords

Navigation