Skip to main content
Log in

Metabolomics as a tool for understanding the evolution of Tabebuia sensu lato

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Background

Plant systematic studies have changed substantially in the last years, stimulated by new strategies for phylogenetic studies. In this regard, chemistry data has been a useful tool for understanding plant phylogenetic relationships.

Objective

Our aim was to apply metabolomic approaches, followed by multivariate statistical analysis and dereplication of Tabebuia sensu lato species, and compare our results with classifications based on traditional taxonomy and molecular phylogeny. We also evaluated the application of metabolomics as a chemotaxonomic identification tool, as well as to enlighten plant chemical evolution.

Methods

Metabolomic data was generated through a high-resolution mass spectrometry with electrospray ionization of 27 Tabebuia sensu lato specimens from different populations, consisting of 15 Handroanthus (from four species) and 12 Tabebuia sensu stricto (from three species). Chemometric tools, such as principal component analysis and metabolite heatmaps, were used to scrutinize the metabolic changes among species.

Results

Tabebuia and Handroanthus species presented different secondary metabolite storage capacity. The genus Tabebuia revealed higher levels of glycosylated iridoids esterified with a phenylpropanoid moiety, such as specioside, verminoside, and minecoside, while Handroanthus accumulated iridoids linked to a simple phenol, lignans, and verbascoside derivatives.

Conclusion

These results corroborate splitting the Tabebuia s.l., which was supported by profound changes in secondary metabolism, suggesting metabolomics as an excellent tool for understanding species evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Font Adapted from Google Earth

Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amessis-Ouchemoukh, N., Abu-Reidah, I. M., Quirantes-Piné, R., Rodríguez-Pérez, C., Madani, K., Fernández-Gutiérrez, A., et al. (2014). Tentative characterisation of iridoids, phenylethanoid glycosides and flavonoid derivatives from Globularia alypum L.(Globulariaceae) leaves by LC-ESI-QTOF-MS. Phytochemical Analysis, 25(5), 389–398.

    Article  CAS  PubMed  Google Scholar 

  • Byeon, S. E., Chung, J. Y., Lee, Y. G., Kim, B. H., Kim, K. H., & Cho, J. Y. (2008). In vitro and in vivo anti-inflammatory effects of taheebo, a water extract from the inner bark of Tabebuia avellanedae. Journal of Ethnopharmacology, 119(1), 145–152.

    Article  PubMed  Google Scholar 

  • Candolle, A. P. (1838). Revue sommaire de la famille des Bignoniacées. Gèneve: Bibliothèque Universelle de Gèneve.

    Google Scholar 

  • Cipriani, F. A., Figueiredo, M. R., Soares, G. L. G., & Kaplan, M. A. C. (2012). Chemical implications in systematics and phylogeny of Bignoniaceae. Química Nova, 35(11), 2125–2131.

    Article  CAS  Google Scholar 

  • Compadre, C., Jáuregui, J., Nathan, P. J., & Enriquez, R. (1982). Isolation of 6-O-(p-coumaroyl)-catalpol from Tabebuia rosea. Planta Medica, 46(9), 42–44.

    Article  CAS  PubMed  Google Scholar 

  • Dai, H., Xiao, C., Liu, H., Hao, F., & Tang, H. (2010). Combined NMR and LC–DAD-MS analysis reveals comprehensive metabonomic variations for three phenotypic cultivars of Salvia miltiorrhiza Bunge. Journal of Proteome Research, 9(3), 1565–1578.

    Article  CAS  PubMed  Google Scholar 

  • Ekenäs, C., Rosén, J., Wagner, S., Merfort, I., Backlund, A., & Andreasen, K. (2009). Secondary chemistry and ribosomal DNA data congruencies in Arnica (Asteraceae). Cladistics, 25(1), 78–92.

    Article  Google Scholar 

  • Ernst, M., Silva, D. B., Silva, R. R., Vêncio, R. Z., & Lopes, N. P. (2014). Mass spectrometry in plant metabolomics strategies: from analytical platforms to data acquisition and processing. Natural Product Reports, 31(6), 784–806.

    Article  CAS  PubMed  Google Scholar 

  • Ferraz-Filha, Z. S., Araújo, M. C. D. P. M., Ferrari, F. C., & Dutra, I. P. A. R. (2016). Tabebuia roseoalba: In vivo hypouricemic and anti-inflammatory effects of its ethanolic extract and constituents. Planta Medica, 82(16), 1395–1402.

    Article  CAS  PubMed  Google Scholar 

  • Garcez, F. R., Garcez, W. S., Mahmoud, T. S., Figueiredo, P., d, O., & Resende, U. M. (2007). New constituents from the trunk bark of Tabebuia heptaphylla. Química Nova, 30(8), 1887–1891.

    Article  CAS  Google Scholar 

  • Gentry, A. H. (1969). Tabebuia: The tortuous history of a generic name (Bignon.). Taxon, 18(6), 635–642.

    Article  Google Scholar 

  • Gentry, A. H. (1972). Handroanthus (Bignoniaceae): A critique. Taxon, 21, 113–114.

    Article  Google Scholar 

  • Gentry, A. H. (1980). Bignoniaceae: Part I (Crescentieae and Tourrettieae). Flora Neotropica, 25(1), 1–130.

    Google Scholar 

  • Gentry, A. H. (1992). Bignoniaceae: Part II (Tribe Tecomeae). Flora Neotropica, 25(2), 1–370.

    Google Scholar 

  • Gouveia, S. C., & Castilho, P. C. (2010). Characterization of phenolic compounds in Helichrysum melaleucum by high-performance liquid chromatography with on-line ultraviolet and mass spectrometry detection. Rapid Communications in Mass Spectrometry, 24(13), 1851–1868.

    Article  CAS  PubMed  Google Scholar 

  • Grose, S. O., & Olmstead, R. G. (2007a). Evolution of a charismatic neotropical clade: Molecular phylogeny of Tabebuia s.l., Crescentieae, and allied genera (Bignoniaceae). Systematic Botany, 32(3), 650–659.

    Article  Google Scholar 

  • Grose, S. O., & Olmstead, R. G. (2007b). Taxonomic revisions in the polyphyletic genus Tabebuia s. I.(Bignoniaceae). Systematic Botany, 32(3), 660–670.

    Article  Google Scholar 

  • Hatfield, R. D., Marita, J. M., Frost, K., Grabber, J., Ralph, J., Lu, F., et al. (2009). Grass lignin acylation: p-coumaroyl transferase activity and cell wall characteristics of C3 and C4 grasses. Planta, 229(6), 1253–1267.

    Article  CAS  PubMed  Google Scholar 

  • Higa, R. A., Aydos, R. D., Silva, I. S., Ramalho, R. T., & Souza, A. S. D. (2011). Study of the antineoplastic action of Tabebuia avellanedae in carcinogenesis induced by azoxymethane in mice. Acta Cirurgica Brasileira, 26(2), 125–128.

    Article  PubMed  Google Scholar 

  • Holmgren, P. K., Holmgren, N. H., & Barnett, L. (1990). Index Herbariorum: Part 1: The Herbaria of the World. New York. New York Botanical Garden, 120, 1–693.

    Google Scholar 

  • Hong, J. L., Qin, X. Y., Shu, P., Wu, G., Wang, Q., & Qin, M. J. (2010). Analysis of catalpol derivatives by characteristic neutral losses using liquid chromatography combined with electrospray ionization multistage and time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, 24(17), 2680–26863.

    Article  CAS  PubMed  Google Scholar 

  • Innocenti, M., Marca, G. l., Malvagia, S., Giaccherini, C., Vincieri, F. F., & Mulinacci, N. (2006). Electrospray ionisation tandem mass spectrometric investigation of phenylpropanoids and secoiridoids from solid olive residue. Rapid Communications in Mass Spectrometry, 20(13), 2013–2022.

    Article  CAS  PubMed  Google Scholar 

  • Jing, L., Lei, Z., Zhang, G., Pilon, A. C., Huhman, D. V., Xie, R., et al. (2015). Metabolite profiles of essential oils in citrus peels and their taxonomic implications. Metabolomics, 11(4), 952–963.

    Article  CAS  Google Scholar 

  • Khadem, S., & Marles, R. J. (2010). Monocyclic phenolic acids; hydroxy-and polyhydroxybenzoic acids: occurrence and recent bioactivity studies. Molecules, 15(11), 7985–8005.

    Article  CAS  PubMed  Google Scholar 

  • Kim, H. K., Khan, S., Wilson, E. G., Kricun, S. D. P., Meissner, A., Goraler, S., et al. (2010). Metabolic classification of South American Ilex species by NMR-based metabolomics. Phytochemistry, 71(7), 773–784.

    Article  CAS  PubMed  Google Scholar 

  • Larsson, K.-H. (2007). Molecular phylogeny of Hyphoderma and the reinstatement of Peniophorella. Mycological Research, 111(2), 186–195.

    Article  PubMed  Google Scholar 

  • Li, C., Zhao, Y., Guo, Z., Zhang, X., Xue, X., & Liang, X. (2014). Effective 2D-RPLC/RPLC enrichment and separation of micro-components from Hedyotis diffusa Willd. and characterization by using ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 99, 35–44.

    Article  CAS  PubMed  Google Scholar 

  • Li, L., Tsao, R., Liu, Z., Liu, S., Yang, R., Young, J. C., et al. (2005). Isolation and purification of acteoside and isoacteoside from Plantago psyllium L. by high-speed counter-current chromatography. Journal of Chromatography A, 1063(1–2), 161–169.

    CAS  PubMed  Google Scholar 

  • Li, Z. H., Wang, Q., Ruan, X., Pan, C. D., & Jiang, D. A. (2010). Phenolics and plant allelopathy. Molecules, 15(12), 8933–8952.

    Article  CAS  PubMed  Google Scholar 

  • Lommen, A. (2009). MetAlign: interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing. Analytical Chemistry, 81(8), 3079–3086.

    Article  CAS  PubMed  Google Scholar 

  • Macel, M., Van Dam, N. M., & Keurentjes, J. J. B. (2010). Metabolomics: the chemistry between ecology and genetics. Molecular Ecology Resources, 10, 583–593.

    Article  CAS  PubMed  Google Scholar 

  • MacNamara, K., Dabrowska, D., Baden, M., & Helle, N. (2011). Advances in the ageing chemistry of distilled spirits matured in oak barrels. LC/GC Asia Pacific, 14(3), 6–22.

    Google Scholar 

  • Mandal, S. M., Chakraborty, D., & Dey, S. (2010). Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signaling & Behavior, 5(4), 359–368.

    Article  CAS  Google Scholar 

  • Marques, F. A., Frensch, G., Zaleski, S. R., Nagata, N., Maia, B. H., Lazzari, S., et al. (2012). Differentiation of five pine species cultivated in Brazil based on chemometric analysis of their volatiles identified by gas chromatography-mass spectrometry. Journal of the Brazilian Chemical Society, 23(9), 1756–1761.

    Article  CAS  Google Scholar 

  • Martucci, M. E. P., De Vos, R. C., Carollo, C. A., & Gobbo-Neto, L. (2014). Metabolomics as a potential chemotaxonomical tool: Application in the genus Vernonia Schreb. PloS ONE, 9(4), e93149.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mattos, J. (1970). Handroanthus, Um novo gênero para os ‘‘ipês’’do Brasil. Loefgrenia, 50(2), 1–4.

    Google Scholar 

  • Messina, A., Callahan, D. L., Walsh, N. G., Hoebee, S. E., & Green, P. T. (2014). Testing the boundaries of closely related daisy taxa using metabolomic profiling. Taxon, 63(2), 367–376.

    Article  Google Scholar 

  • Mišić, D., Šiler, B., Gašić, U., Avramov, S., Živković, S., Nestorović Živković, J., et al. (2015). Simultaneous UHPLC/DAD/(+/–) HESI–MS/MS analysis of phenolic acids and nepetalactones in methanol extracts of Nepeta species: A possible application in chemotaxonomic studies. Phytochemical Analysis, 26(1), 72–85.

    Article  PubMed  Google Scholar 

  • Nakano, K., Maruyama, K., Murakami, K., Takaishi, Y., & Tomimatsu, T. (1993). Iridoids from Tabebuia avellanedae. Phytochemistry, 32(2), 371–373.

    Article  CAS  Google Scholar 

  • Nunes, G. P., Silva, M. F., Resende, U. M., & De Siqueira, J. M. (2003). Medicinal plants from herb sellers operating in downtown Campo Grande, Mato Grosso do Sul, Brazil. Revista Brasileira de Farmacognosia, 13(2), 83–92.

    Article  Google Scholar 

  • Olmstead, R. G., Zjhra, M. L., Lohmann, L. G., Grose, S. O., & Eckert, A. J. (2009). A molecular phylogeny and classification of Bignoniaceae. American Journal of Botany, 96(9), 1731–1743.

    Article  CAS  PubMed  Google Scholar 

  • Pan, Y., Zhang, J., Zhao, Y. L., Wang, Y. Z., & Jin, H. (2016). Chemotaxonomic studies of nine Gentianaceae species from western china based on liquid chromatography tandem mass spectrometry and fourier transform infrared spectroscopy. Phytochemical Analysis, 27, 158–167.

    Article  CAS  PubMed  Google Scholar 

  • Pennington, R. T., Lewis, G. P., & Ratter, J. A. (2006). An overview of the plant diversity, biogeography and conservation of neotropical savannas and seasonally dry forests (Vol. 69, pp. 1–29). Boca Raton: CRC Press.

  • Piątczak, E., Królicka, A., Wielanek, M., & Wysokińska, H. (2012). Hairy root cultures of Rehmannia glutinosa and production of iridoid and phenylethanoid glycosides. Acta Physiologiae Plantarum, 34(6), 2215–2224.

    Article  Google Scholar 

  • Porzel, A., Farag, M. A., Mülbradt, J., & Wessjohann, L. A. (2014). Metabolite profiling and fingerprinting of Hypericum species: A comparison of MS and NMR metabolomics. Metabolomics, 10(4), 574–588.

    Article  CAS  Google Scholar 

  • Pott, A., & Pott, V.J. (1994). Plantas do Pantanal. Brasília: Embrapa.

    Google Scholar 

  • Reynolds, T. (2007). The evolution of chemosystematics. Phytochemistry, 68(22), 2887–2895.

    Article  CAS  PubMed  Google Scholar 

  • Saldanha, L. L., Vilegas, W., & Dokkedal, A. L. (2013). Characterization of flavonoids and phenolic acids in Myrcia bella cambess. Using FIA-ESI-IT-MSn and HPLC-PAD-ESI-IT-MS combined with NMR. Molecules, 18(7), 8402–8416.

    Article  CAS  PubMed  Google Scholar 

  • Sandasi, M., Kamatou, G. P., & Viljoen, A. M. (2012). An untargeted metabolomic approach in the chemotaxonomic assessment of two Salvia species as a potential source of α-bisabolol. Phytochemistry, 84, 94–101.

    Article  CAS  PubMed  Google Scholar 

  • Santos, G., & Miller, R. (1992). Wood anatomy of Tecomeae. Flora Neotropica Monograph, 25, 336–358.

    Google Scholar 

  • Santos, R., Conserva, L., Bastos, M., & Campesatto, E. (2015). Biological potential assessment of Tabebuia aurea (Silva Manso) as a source of bioactive molecules for antimicrobial, antiedematogenic and antiradical activity. Revista Brasileira de Plantas Medicinais, 17(4), 1159–1168.

    Article  Google Scholar 

  • Sheth, B. P., & Thaker, V. S. (2014). Plant systems biology: insights, advances and challenges. Planta, 240, 33–54.

    Article  CAS  PubMed  Google Scholar 

  • Silva, A. M. L., Costa, M. F. B., Leite, V. G., Rezende, A. A., & de Pádua Teixeira, S. (2009). Leaf anatomy with taxonomic implications in” ipê” species. Hoehnea, 36(2), 329–338.

    Article  Google Scholar 

  • Sprague, T., & Sandwith, N. (1932). Tabebuias of British Guiana and Trinidad. Kew Bulletin, 1932, 18–29.

    Google Scholar 

  • Teixeira, T. L., Teixeira, S. C., Silva, C. V. D., & Souza, M. A. D. (2014). Potential therapeutic use of herbal extracts in trypanosomiasis. Pathogens and Global Health, 108(1), 30–36.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tikunov, Y., Laptenok, S., Hall, R., Bovy, A., & De Vos, R. (2012). MSClust: A tool for unsupervised mass spectra extraction of chromatography-mass spectrometry ion-wise aligned data. Metabolomics, 8(4), 714–718.

    Article  CAS  PubMed  Google Scholar 

  • Unelius, C. R., Nordlander, G., Nordenhem, H., Hellqvist, C., Legrand, S., & Borg-Karlson, A. -K. (2006). Structure–activity relationships of benzoic acid derivatives as antifeedants for the pine weevil, Hylobius abietis. Journal of Chemical Ecology, 32(10), 2191–2203.

    Article  CAS  PubMed  Google Scholar 

  • Von Poser, G. L., Schripsema, J., Henriques, A. T., & Jensen, S. R. (2000). The distribution of iridoids in Bignoniaceae. Biochemical Systematics and Ecology, 28(4), 351–366.

    Article  Google Scholar 

  • Warashina, T., Nagatani, Y., & Noro, T. (2004). Constituents from the bark of Tabebuia impetiginosa. Phytochemistry, 65(13), 2003–2011.

    Article  CAS  PubMed  Google Scholar 

  • Waterman, P. G. (2007). The current status of chemical systematics. Phytochemistry, 68(22–24), 2896–2903.

    Article  CAS  PubMed  Google Scholar 

  • Xia, J., Sinelnikov, I. V., Han, B., & Wishart, D. S. (2015). MetaboAnalyst 3.0—making metabolomics more meaningful. Nucleic Acids Research, 43(1), 251–257.

    Article  Google Scholar 

  • Xiao, C., Wu, M., Chen, Y., Jia, P., Jia, R., & Zheng, X. (2014). Metabolomic analysis provides novel chemotaxonomic characteristics for phenotypic cultivars of tree peony. Analytical Methods, 6(19), 7854–7864.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul (FUNDECT) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the research grant given to authors, and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Alexandre Carollo.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human or animal subjects.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 786 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, V.S., Macedo, F.A., do Vale, J.S. et al. Metabolomics as a tool for understanding the evolution of Tabebuia sensu lato . Metabolomics 13, 72 (2017). https://doi.org/10.1007/s11306-017-1209-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-017-1209-8

Keywords

Navigation