Skip to main content
Log in

Untargeted metabolomics approach using UPLC-ESI-QTOF-MS to explore the metabolome of fresh-cut iceberg lettuce

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

The shelf-life of fresh-cut lettuce after storage is limited by several factors that affect its quality and lead to consumer rejection. Different metabolic events occur after cutting as an abiotic stress response.

Objectives

This study aims to explore the metabolome of iceberg lettuce and to understand the changes related to storage time and genetics applying an untargeted metabolomics approach.

Methods

Two cultivars with different browning susceptibility, fast-browning (FB) and slow-browning (SB), were analyzed by UPLC-ESI-QTOF-MS just after cutting (d0) and after five days of storage (d5). Extraction, metabolic profiling, and data-pretreatment procedures were optimized to obtain a robust and reliable data set.

Results

Preliminary principal component analysis and hierarchical cluster analysis of the full dataset [around 8551 extracted, aligned and filtered molecular features (MFs)] showed a clear separation between the different samples (FB-d0, FB-d5, SB-d0, and SB-d5), highlighting a clear storage time-dependent effect. After statistical analysis applying Student’s t test, 536 MFs were detected as significantly different between d0 and d5 of storage in FB and 633 in SB. Some of them (221) were common to both cultivars. Out of these significant compounds, 22 were tentatively identified by matching their molecular formulae with those previously reported in the literature. Five families of metabolites were detected: amino acids, phenolic compounds, sesquiterpene lactones, fatty acids, and lysophospholipids. All compounds showed a clear trend to decrease at d5 except phenolic compounds that increased after storage.

Conclusion

The untargeted metabolomics analysis is a powerful tool for characterizing the changes on lettuce metabolome associated with cultivar and especially with storage time. Some families of compounds affected by storage time were reported to be closely related to quality loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abu-Reidah, I. M., Contreras, M. M., Arraez-Roman, D., Segura-Carretero, A., & Fernandez-Gutierrez, A. (2013). Reversed-phase ultra-high-performance liquid chromatography coupled to electrospray ionization-quadrupole-time-of-flight mass spectrometry as a powerful tool for metabolic profiling of vegetables: Lactuca sativa as an example of its application. Journal of Chromatography A, 1313, 212–227.

    Article  CAS  PubMed  Google Scholar 

  • Arapitsas, P., Speri, G., Angeli, A., Perenzoni, D., & Mattivi, F. (2014). The influence of storage on the “chemical age” of red wines. Metabolomics, 10(5), 816–832.

    Article  CAS  Google Scholar 

  • Beni, C., Marconi, S., Boccia, P., Ciampa, A., Diana, G., Aromolo, R., et al. (2011). Use of arsenic contaminated irrigation water for lettuce cropping: effects on soil, groundwater, and vegetal. Biological Trace Element Research, 143(1), 518–529.

    Article  CAS  PubMed  Google Scholar 

  • Bernillon, S., Biais, B., Deborde, C., Maucourt, M., Cabasson, C., Gibon, Y., et al. (2013). Metabolomic and elemental profiling of melon fruit quality as affected by genotype and environment. Metabolomics, 9(1), 57–77.

    Article  CAS  Google Scholar 

  • De Vos, R. C. H., Moco, S., Lommen, A., Keurentjes, J. J. B., Bino, R. J., & Hall, R. D. (2007). Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nature Protocols, 2(4), 778–791.

    Article  PubMed  Google Scholar 

  • Diaz, R., Pozo, O. J., Sancho, J. V., & Hernandez, F. (2014). Metabolomic approaches for orange origin discrimination by ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Food Chemistry, 157, 84–93.

    Article  CAS  PubMed  Google Scholar 

  • Farneti, B., Busatto, N., Khomenko, I., Cappellin, L., Gutierrez, S., Spinelli, F., et al. (2015). Untargeted metabolomics investigation of volatile compounds involved in the development of apple superficial scald by PTR-ToF-MS. Metabolomics, 11(2), 341–349.

    Article  CAS  Google Scholar 

  • Ferri, E., Galimberti, A., Casiraghi, M., Airoldi, C., Ciaramelli, C., Palmioli, A., et al. (2015). Towards a universal approach based on omics technologies for the quality control of food. BioMed Research International, 365794, 1–14.

    Article  Google Scholar 

  • Fiehn, O. (2001). Combining genomics, metabolome analysis, and biochemical modeling to understand metabolic networks. Comparative and Functional Genomics, 2(3), 155–168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Cañas, V., Simo, C., Herrero, M., Ibanez, E., & Cifuentes, A. (2012). Present and future challenges in food analysis: foodomics. Analytical Chemistry, 84(23), 10150–10159.

    Article  PubMed  Google Scholar 

  • Gil, M. I., Tudela, J. A., Martínez-Sánchez, A., & Luna, M. C. (2012). Harvest maturity indicators of leafy vegetables. Stewart Postharvest Review, 8(1), 1–9.

    Article  Google Scholar 

  • Heimler, D., Isolani, L., Vignolini, P., Tombelli, S., & Romani, A. (2007). Polyphenol content and antioxidative activity in some species of freshly consumed salads. Journal of Agricultural and Food Chemistry, 55(5), 1724–1729.

    Article  CAS  PubMed  Google Scholar 

  • Hendriks, M., van Eeuwijk, F. A., Jellema, R. H., Westerhuis, J. A., Reijmers, T. H., Hoefsloot, H. C. J., et al. (2011). Data-processing strategies for metabolomics studies. Trac-Trends in Analytical Chemistry, 30(10), 1685–1698.

    Article  CAS  Google Scholar 

  • Jaiswal, R., Kiprotich, J., & Kuhnert, N. (2011). Determination of the hydroxycinnamate profile of 12 members of the Asteraceae family. Phytochemistry, 72(8), 781–790.

    Article  CAS  PubMed  Google Scholar 

  • Le Boucher, C., Courant, F., Royer, A. L., Jeanson, S., Lortal, S., Dervilly-Pinel, G., et al. (2015). LC-HRMS fingerprinting as an efficient approach to highlight fine differences in cheese metabolome during ripening. Metabolomics, 11(5), 1117–1130.

    Article  Google Scholar 

  • Llorach, R., Martinez-Sanchez, A., Tomas-Barberan, F. A., Gil, M. I., & Ferreres, F. (2008). Characterisation of polyphenols and antioxidant properties of five lettuce varieties and escarole. Food Chemistry, 108(3), 1028–1038.

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Galvez, G., Saltveit, M., & Cantwell, M. (1996). Wound-induced phenylalanine ammonia lyase activity: factors affecting its induction and correlation with the quality of minimally processed lettuces. Postharvest Biology and Technology, 9(2), 223–233.

    Article  CAS  Google Scholar 

  • Lopez-Sanchez, P., de Vos, R. C. H., Jonker, H. H., Mumm, R., Hall, R. D., Bialek, L., et al. (2015). Comprehensive metabolomics to evaluate the impact of industrial processing on the phytochemical composition of vegetables purees. Food Chemistry, 168, 348–355.

    Article  CAS  PubMed  Google Scholar 

  • Lucini, L., Rouphael, Y., Cardarelli, M., Canaguier, R., Kumar, P., & Colla, G. (2015). The effect of a plant-derived biostimulant on metabolic profiling and crop performance of lettuce grown under saline conditions. Scientia Horticulturae, 182, 124–133.

    Article  CAS  Google Scholar 

  • Luna, M. C., Tudela, J. A., Martinez-Sanchez, A., Allende, A., Marin, A., & Gil, M. I. (2012). Long-term deficit and excess of irrigation influences quality and browning related enzymes and phenolic metabolism of fresh-cut iceberg lettuce (Lactuca sativa L.). Postharvest Biology and Technology, 73, 37–45.

    Article  CAS  Google Scholar 

  • Mai, F., & Glomb, M. A. (2014). Isolation of phenolic compounds from iceberg lettuce and impact on enzymatic browning. Journal of Agricultural and Food Chemistry, 61(11), 2868–2874.

    Article  Google Scholar 

  • Martinez-Sanchez, A., Luna, M. C., Selma, M. V., Tudela, J. A., Abad, J., & Gil, M. I. (2012). Baby-leaf and multi-leaf of green and red lettuces are suitable raw materials for the fresh-cut industry. Postharvest Biology and Technology, 63(1), 1–10.

    Article  Google Scholar 

  • Martinez-Sanchez, A., Tudela, J. A., Luna, C., Allende, A., & Gil, M. I. (2011). Low oxygen levels and light exposure affect quality of fresh-cut Romaine lettuce. Postharvest Biology and Technology, 59(1), 34–42.

    Article  CAS  Google Scholar 

  • Martin-Lorenzo, M., Zubiri, I., Maroto, A. S., Gonzalez-Calero, L., Posada-Ayala, M., de la Cuesta, F., et al. (2015). KLK1 and ZG16B proteins and arginine-proline metabolism identified as novel targets to monitor atherosclerosis, acute coronary syndrome, and recovery. Metabolomics, 11(5), 1056–1106.

    Article  CAS  PubMed  Google Scholar 

  • Monti, L. L., Bustamante, C. A., Osorio, S., Gabilondo, J., Borsani, J., Lauxmann, M. A., et al. (2016). Metabolic profiling of a range of peach fruit varieties reveals high metabolic diversity and commonalities and differences during ripening. Food Chemistry, 190, 879–888.

    Article  CAS  PubMed  Google Scholar 

  • Neumann, S., & Boecker, S. (2010). Computational mass spectrometry for metabolomics: identification of metabolites and small molecules. Analytical and Bioanalytical Chemistry, 398(7–8), 2779–2788.

    Article  CAS  PubMed  Google Scholar 

  • O’Hagan, S., Swainston, N., Handl, J., & Kell, D. B. (2015). A ‘rule of 0.5′ for the metabolite-likeness of approved pharmaceutical drugs. Metabolomics, 11(2), 323–339.

    Article  Google Scholar 

  • Pereira, S. I., Figueiredo, P. I., Barros, A. S., Dias, M. C., Santos, C., Duarte, I. F., et al. (2014). Changes in the metabolome of lettuce leaves due to exposure to mancozeb pesticide. Food Chemistry, 154, 291–298.

    Article  CAS  PubMed  Google Scholar 

  • Puchades-Carrasco, L., & Pineda-Lucena, A. (2015). Metabolomics in pharmaceutical research and development. Current Opinion in Biotechnology, 35, 73–77.

    Article  CAS  PubMed  Google Scholar 

  • Ribas-Agusti, A., Gratacos-Cubarsi, M., Sarraga, C., Garcia-Regueiro, J. A., & Castellari, M. (2011). Analysis of eleven phenolic compounds including novel p-coumaroyl derivatives in lettuce (Lactuca sativa L.) by ultra-high-performance liquid chromatography with photodiode array and mass spectrometry detection. Phytochemical Analysis, 22(6), 555–563.

    Article  CAS  PubMed  Google Scholar 

  • Roessner, U., Luedemann, A., Brust, D., Fiehn, O., Linke, T., Willmitzer, L., et al. (2001). Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell, 13(1), 11–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saltveit, M. E., Choi, Y. J., & Tomas-Barberan, F. A. (2005). Involvement of components of the phospholipid-signaling pathway in wound-induced phenylpropanoid metabolism in lettuce (Lactuca sativa) leaf tissue. Physiologia Plantarum, 125(3), 345–355.

    Article  CAS  Google Scholar 

  • Sanchez-Perez, E. M., Jose-Iglesias, M., Lopez-Ortiz, F., Sanchez-Perez, I., & Martinez-Galera, M. (2010). Study of the suitability of HRMAS NMR for metabolic profiling of tomatoes: application to tissue differentiation and fruit ripening. Food Chemistry, 122(3), 877–887.

    Article  Google Scholar 

  • Scherer, G. F. E. (1996). Phospholipid signaling and lipid-derived second messengers in plants. Plant Growth Regulation, 18(1–2), 125–133.

    Article  CAS  Google Scholar 

  • Schilling, C. H., Schuster, S., Palsson, B. O., & Heinrich, R. (1999). Metabolic pathway analysis: basic concepts and scientific applications in the post-genomic era. Biotechnology Progress, 15(3), 296–303.

    Article  CAS  PubMed  Google Scholar 

  • Sessa, R. A., Bennett, M. H., Lewis, M. J., Mansfield, J. W., & Beale, M. H. (2000). Metabolite profiling of sesquiterpene lactones from Lactuca species: major latex components are novel oxalate and sulfate conjugates of lactucin and its derivatives. Journal of Biological Chemistry, 275(35), 26877–26884.

    CAS  PubMed  Google Scholar 

  • Shepherd, L. V. T., Fraser, P., & Steward, D. (2011). Metabolomics: a second-generation platform for crop and food analysis. Bioanalysis, 3, 1143–1159.

    Article  CAS  PubMed  Google Scholar 

  • Sobolev, A. P., Brosio, E., Gianferri, R., & Segre, A. L. (2005). Metabolic profile of lettuce leaves by high-field NMR spectra. Magnetic Resonance in Chemistry, 43(8), 625–638.

    Article  CAS  PubMed  Google Scholar 

  • Sobolev, A. P., Capitani, D., Giannino, D., Nicolodi, C., Testone, G., Santoro, F., et al. (2010). NMR-metabolic methodology in the study of GM foods. Nutrients, 2(1), 1–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugimoto, M., Goto, H., Otomo, K., Ito, M., Onuma, H., Suzuki, A., et al. (2010). Metabolomic profiles and sensory attributes of edamame under various storage duration and temperature conditions. Journal of Agricultural and Food Chemistry, 58(14), 8418–8425.

    Article  CAS  PubMed  Google Scholar 

  • Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., et al. (2007). Proposed minimum reporting standards for chemical analysis. Metabolomics, 3, 211–221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toivonen, P. M. A., & Brummell, D. A. (2008). Biochemical basis of appearance and texture changes in fresh-cut fruit and vegetables. Postharvest Biology and Technology, 48(1), 1–14.

    Article  CAS  Google Scholar 

  • Tomas-Barberan, F. A., LoaizaVelarde, J., Bonfanti, A., & Saltveit, M. E. (1997). Early wound- and ethylene-induced changes in phenylpropanoid metabolism in harvested lettuce. Journal of the American Society for Horticultural Science, 122(3), 399–404.

    CAS  Google Scholar 

  • Weckwerth, W. (2010). Metabolomics: an integral technique in systems biology. Bioanalysis, 2(4), 829–836.

    Article  CAS  PubMed  Google Scholar 

  • Wesolowska, A., Nikiforuk, A., Michalska, K., Kisiel, W., & Chojnacka-Wojcik, E. (2006). Analgesic and sedative activities of lactucin and some lactucin-like guaianolides in mice. Journal of Ethnopharmacology, 107(2), 254–258.

    Article  CAS  PubMed  Google Scholar 

  • Yan, X. J., Li, H. Y., Xu, J. L., & Zhou, C. X. (2010). Analysis of phospholipids in microalga Nitzschia closterium by UPLC-Q-TOF-MS. Chinese Journal of Oceanology and Limnology, 28(1), 106–112.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank the MINECO (project AGL2013-48529-R) and Fundación Séneca (19900/GERM/15) for financial support. Carlos García-Hernández benefitted from a grant (BES-2014-069233). Authors are also grateful to Natalia Hernández for the assistance with lettuce processing (preparation and extraction of samples) and Fernando Álvarez for the graphic design.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco A. Tomás-Barberán.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study does not involve the use of animal or human samples.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 280 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia, C.J., García-Villalba, R., Garrido, Y. et al. Untargeted metabolomics approach using UPLC-ESI-QTOF-MS to explore the metabolome of fresh-cut iceberg lettuce. Metabolomics 12, 138 (2016). https://doi.org/10.1007/s11306-016-1082-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-016-1082-x

Keywords

Navigation