Skip to main content
Log in

Inaccurate quantitation of palmitate in metabolomics and isotope tracer studies due to plastics

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Palmitate, the typical end product released from fatty acid synthase, is of interest to many researchers performing metabolomics. Although palmitate can be readily detected by using mass spectrometry, many metabolomic platforms involve the use of plastic consumables that introduce a competing background signal of palmitate.

Objectives

The goal of this study was to quantify palmitate contamination in metabolomics and isotope tracer studies and to examine the reliability of approaches for reducing error.

Methods

We measured the quantitative error introduced by palmitate contamination from 4 vendors of plastic consumables used in combination with several different extraction solvents.

Results

The background palmitate signal was as much as sixfold higher than the biological palmitate signal from 4 million 3T3-L1 cells. Importantly, the palmitate contamination signal was highly variable between plastic consumables (even within the same lot) and therefore could not be accurately removed by subtracting the background as measured from a blank. In addition to affecting relative and absolute quantitation, the palmitate background signal from disposable plastics also led to the underestimation of labeled palmitate in isotope tracer experiments.

Conclusion

When measuring palmitate standard solutions, the best results were obtained when glass vials and glass pipettes were used. However, much of the palmitate background signal could be eliminated by pre-rinsing plastic vials and plastic pipette tips with methanol prior to sample introduction. For isotope tracer studies, error could also be minimized by estimating palmitate enrichment from palmitoylcarnitine, which does not have a competing contamination signal from plastic consumables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Glatz, J. F., Luiken, J. J., & Bonen, A. (2010). Membrane fatty acid transporters as regulators of lipid metabolism: implications for metabolic disease. Physiological Reviews, 90, 367–417. doi:10.1152/physrev.00003.2009.

    Article  CAS  PubMed  Google Scholar 

  • Gross, R. W., & Han, X. (2011). Lipidomics at the interface of structure and function in systems biology. Chemistry & Biology, 18, 284–291. doi:10.1016/j.chembiol.2011.01.014.

    Article  CAS  Google Scholar 

  • Ivanisevic, J., et al. (2013). Toward ‘omic scale metabolite profiling: a dual separation-mass spectrometry approach for coverage of lipid and central carbon metabolism. Analytical Chemistry, 85, 6876–6884. doi:10.1021/ac401140h.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, L., et al. (2016). Reductive carboxylation supports redox homeostasis during anchorage-independent growth. Nature, 532, 255–258. doi:10.1038/nature17393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamphorst, J. J., Chung, M. K., Fan, J., & Rabinowitz, J. D. (2014). Quantitative analysis of acetyl-CoA production in hypoxic cancer cells reveals substantial contribution from acetate. Cancer Metab, 2, 23. doi:10.1186/2049-3002-2-23.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kurczy, M. E., Ivanisevic, J., Johnson, C. H., Uritboonthai, W., Hoang, L., Fang, M. et al. (2015). Determining conserved metabolic biomarkers from a million database queries. Bioinformatics, 31, 3721–3724. doi:10.1093/bioinformatics/btv475.

    CAS  PubMed  Google Scholar 

  • Lee, T. W., Tumanov, S., Villas-Boas, S. G., Montgomery, J. M., & Birch, N. P. (2015). Chemicals eluting from disposable plastic syringes and syringe filters alter neurite growth, axogenesis and the microtubule cytoskeleton in cultured hippocampal neurons. Journal of Neurochemistry, 133(1), 53–65.

    Article  CAS  PubMed  Google Scholar 

  • Li, Q., Deng, S., Ibarra, R. A., Anderson, V. E., Brunengraber, H., & Zhang, G. F. (2015). Multiple mass isotopomer tracing of acetyl-CoA metabolism in Langendorff-perfused rat hearts: channeling of acetyl-CoA from pyruvate dehydrogenase to carnitine acetyltransferase. Journal of Biological Chemistry, 290, 8121–8132. doi:10.1074/jbc.M114.631549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahieu, N. G., Spalding, J., & Patti, G. J. (2015). Warpgroup: increased Precision of metabolomic data processing by consensus integration bound analysis. Bioinformatics. doi:10.1093/bioinformatics/btv564.

    PubMed  Google Scholar 

  • Metallo, C. M., et al. (2012). Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature, 481, 380–384. doi:10.1038/nature10602.

    CAS  Google Scholar 

  • Millard, P., Letisse, F., Sokol, S., & Portais, J. C. (2012). IsoCor: correcting MS data in isotope labeling experiments. Bioinformatics, 28, 1294–1296. doi:10.1093/bioinformatics/bts127.

    Article  CAS  PubMed  Google Scholar 

  • Nikolskiy, I., Mahieu, N. G., Chen, Y. J., Tautenhahn, R., & Patti, G. J. (2013). An untargeted metabolomic workflow to improve structural characterization of metabolites. Analytical Chemistry, 85, 7713–7719. doi:10.1021/ac400751j.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olivieri, A., Degenhardt, O. S., McDonald, G. R., Narang, D., Paulsen, I. M., Kozuska, J. L., & Holt, A. (2012). On the disruption of biochemical and biological assays by chemicals leaching from disposable laboratory plasticware. Canadian Journal of Physiology and Pharmacology, 90, 697–703. doi:10.1139/y2012-049.

    Article  CAS  PubMed  Google Scholar 

  • Stillwell, W. (2013). Chapter 4—membrane lipids: fatty acids an introduction to biological membranes (pp. 43–56). San Diego: Elsevier.

    Book  Google Scholar 

  • Tredwell, G. D., & Keun, H. C. (2015). convISA: a simple, convoluted method for isotopomer spectral analysis of fatty acids and cholesterol. Metabolic Engineering, 32, 125–132. doi:10.1016/j.ymben.2015.09.008.

    Article  CAS  PubMed  Google Scholar 

  • Tumanov, S., Bulusu, V., & Kamphorst, J. J. (2015). Analysis of fatty acid metabolism using stable isotope tracers and mass spectrometry. Methods in Enzymology, 561, 197–217. doi:10.1016/bs.mie.2015.05.017.

    Article  PubMed  Google Scholar 

  • Yao, C. H., Fowle-Grider, R., Mahieu, N. G., Liu, G. Y., Chen, Y. J., Wang, R. et al. (2016). Exogenous fatty acids are the preferred source of membrane lipids in proliferating fibroblasts. Cell Chemical Biology, 23, 483–493. doi:10.1016/j.chembiol.2016.03.007.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the National Institutes of Health grants R01 ES022181 (GJP), R21 CA191097 (GJP), and R01 HL118639-03 (RWG) as well as grants from the Alfred P. Sloan Foundation (GJP), the Camille & Henry Dreyfus Foundation (GJP), and the Pew Scholars Program in the Biomedical Sciences (GJP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary J. Patti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, CH., Liu, GY., Yang, K. et al. Inaccurate quantitation of palmitate in metabolomics and isotope tracer studies due to plastics. Metabolomics 12, 143 (2016). https://doi.org/10.1007/s11306-016-1081-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-016-1081-y

Keywords

Navigation