Skip to main content

Advertisement

Log in

Preclinical models for interrogating drug action in human cancers using Stable Isotope Resolved Metabolomics (SIRM)

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Objectives

In this review we compare the advantages and disadvantages of different model biological systems for determining the metabolic functions of cells in complex environments, how they may change in different disease states, and respond to therapeutic interventions.

Introduction

All preclinical drug-testing models have advantages and drawbacks. We compare and contrast established cell, organoid and animal models with ex vivo organ or tissue culture and in vivo human experiments in the context of metabolic readout of drug efficacy. As metabolism reports directly on the biochemical state of cells and tissues, it can be very sensitive to drugs and/or other environmental changes. This is especially so when metabolic activities are probed by stable isotope tracing methods, which can also provide detailed mechanistic information on drug action. We have developed and been applying Stable Isotope-Resolved Metabolomics to examine metabolic reprogramming of human lung cancer cells in monoculture, in mouse xenograft/explant models, and in lung cancer patients in situ (Lane et al. in Omics 15:173–182, 2011; Fan et al. in Metabolomics 7(2):257–269, 2011a, in Pharmacol Ther 133:366–391, 2012a, in Metabolomics 8(3):517–527, b; Xie et al. in Cell Metab 19:795–809, 2014; Ren et al. in Sci Rep 4:5414, 2014; Sellers et al. in J Clin Investig 125(2):687–698, 2015). We are able to determine the influence of the tumor microenvironment using these models. We have now extended the range of models to fresh human tissue slices, similar to those originally described by Warburg (Biochem Z 142:317–333, 1923), which retain the native tissue architecture and heterogeneity with a paired benign versus cancer design under defined cell culture conditions. This platform offers an unprecedented human tissue model for preclinical studies on metabolic reprogramming of human cancer cells in their tissue context, and response to drug treatment (Xie et al. 2014). As the microenvironment of the target human tissue is retained and individual patient’s response to drugs is obtained, this platform promises to transcend current limitations of drug selection for clinical trials or treatments

Conclusions

Development of ex vivo human tissue and animal models with humanized organs including bone marrow and liver show considerable promise for analyzing drug responses that are more relevant to humans. Similarly using stable isotope tracer methods with these improved models in advanced stages of the drug development pipeline, in conjunction with tissue biopsy is expected significantly to reduce the high failure rate of experimental drugs in Phase II and III clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

IRB:

Institutional Review Board

PDX:

Patient derived xenograft

(m)SIRM:

(multiplexed) Stable Isotope-Resolved Metabolomics

References

  • Adams, C. P., & Brantner, V. V. (2010). Spending on new drug development. Health Economics, 19(2), 130–141.

    Article  PubMed  Google Scholar 

  • Ahuja, D., Sáenz-Robles, M. T., & Pipas, J. M. (2005). SV40 large T antigen targets multiple cellular pathways to elicit cellular transformation. Oncogene, 24, 7729–7745.

    Article  CAS  PubMed  Google Scholar 

  • Amiri-Kordestani, L., & Fojo, T. (2012). Why do phase III clinical trials in oncology fail so often? JNCI, 104, 568–569.

    Article  PubMed  Google Scholar 

  • Aparicio, S., Hidalgo, M., & Kung, A. L. (2015). Examining the utility of patient-derived xenograft mouse models. Nature Reviews Cancer, 15, 311–316.

    Article  CAS  PubMed  Google Scholar 

  • Arinze, I. J., & Hanson, R. W. (1980). Compartmentation and its role in metabolic regulation. In R. M. Cohn, R. H. Herman, & P. D. McNamara (Eds.), Principles of metabolic control in mammalian systems (pp. 495–534). US: Springer.

    Chapter  Google Scholar 

  • Arita, M. (2004). The metabolic world of Escherichia coli is not small. Proceedings of the National Academy of Sciences of the United States of America, 101(6), 1543–1547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arrowsmith, J. (2011). Biobusiness briefs: Trial watch: Phase II failures: 2008–2010. Nature Reviews Drug Discovery, 10, 328–329.

    Article  CAS  PubMed  Google Scholar 

  • Azuma, H., Paulk, N., Ranade, A., Dorrell, C., Al-Dhalimy, M., Ellis, E., et al. (2007). Robust expansion of human hepatocytes in Fah(−/−)/Rag2(−/−)/Il2rg(−/−) mice. Nature Biotechnology, 25(8), 903–910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beloribi-Djefaflia, S., Siret, C., & Lombardo, D. (2015). Exosomal lipids induce human pancreatic tumoral MiaPaCa-2 cells resistance through the CXCR4-SDF-1alpha signaling axis. Oncoscience, 2(1), 15–30.

    PubMed  Google Scholar 

  • Belteki, G., Haigh, J., Kabacs, N., Haigh, K., Sison, K., Costantini, F., et al. (2005). Conditional and inducible transgene expression in mice through the combinatorial use of Cre-mediated recombination and tetracycline induction. Nucleic Acids Research, 33, e51.

    Article  PubMed  PubMed Central  Google Scholar 

  • Berndt, W. O. (1976). Use of tissue slice technique for evaluation of renal transport processes. Environmental Health Perspectives, 15, 73–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bility, M. T., Zhang, L., Washburn, M. L., Curtis, T. A., Kovalev, G. I., & Su, L. (2012). Generation of a humanized mouse model with both human immune system and liver cells to model hepatitis C virus infection and liver immunopathogenesis. Nature Protocols, 7(9), 1608–1617. doi:10.1038/nprot.2012.083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bissell, M. J., Rizki, A., & Mian, I. S. (2003). Tissue architecture: The ultimate regulator of breast epithelial function. Current Opinion in Cell Biology, 15(6), 753–762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blacker, T. S., Mann, Z. F., Gale, J. E., Ziegler, M., Bain, A. J., Szabadkai, G., et al. (2014). Separating NADH and NADPH fluorescence in live cells and tissues using FLIM. Nature Communications, 5, 3936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonuccelli, G., Whitaker-Menezes, D., Castello-Cros, R., Pavlides, S., Pestell, R. G., Fatatis, A., et al. (2010). The reverse Warburg effect: Glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts. Cell Cycle, 9(10), 1960–1971.

    Article  CAS  PubMed  Google Scholar 

  • Boumezbeur, F., Petersen, K. F., Cline, G. W., Mason, G. F., Behar, K. L., Shulman, G. I., et al. (2010). The contribution of blood lactate to brain energy metabolism in humans measured by dynamic C-13 nuclear magnetic resonance spectroscopy. Journal of Neuroscience, 30(42), 13983–13991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bousamra, M., Day, J., Fan, T. W.-M., Higashi, R. M., Kloecker, G., Lane, A. N., et al. (2012). Clinical aspects of metabolomics. In The handbook of metabolomics. (Vol. 17, Vol. Methods in Pharmacology and Toxicology). Totoya: Humana.

  • Brehm, M. A., Shultz, L. D., & Greiner, D. L. (2010). Humanized mouse models to study human diseases. Current opinion in Endocrinology, Diabetes, and Obesity, 17(2), 120–125.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brehm, M. A., Shultz, L. D., Luban, J., & Greiner, D. L. (2013). Overcoming current limitations in humanized mouse research. Journal of Infectious Diseases, 208, S125–S130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buescher, J. M., Antoniewicz, M. R., Boros, L. G., Burgess, S. C., Brunengraber, H., Clish, C. B., et al. (2015). A roadmap for interpreting (13)C metabolite labeling patterns from cells. Current Opinion in Biotechnology, 34, 189–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caneba, C. A., Yang, L., Baddour, J., Curtis, R., Win, J., Hartig, S., et al. (2014). Nitric oxide is a positive regulator of the Warburg effect in ovarian cancer cells. Cell Death and Disease, 5, e1302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cascante, M., Franco, R., & Canela, E. I. (1989). Use of implicit methods from general sensitivity theory to develop a systematic-approach to metabolic control. 2. Complex-systems. Mathematical Biosciences, 94(2), 289–309.

    Article  CAS  PubMed  Google Scholar 

  • Cascante, M., Selivanov, V., & Ramos-Montoya, A. (2012). Application of traceer-based metabolomics and flux analysis in targteted cancer drug design. In T. W.-M. Fan, A. N. Lane, & R. M. Higashi (Eds.), The handbook of metabolomics (pp. 299–320, Methods in Pahrmacology and Toxicology). New York: Springer.

  • Cassidy, J. W., Caldas, C., & Bruna, A. (2015). Maintaining tumor heterogeneity in patient-derived tumor xenografts. Cancer Research, 75, 2963–2968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatham, J. C., & Seymour, A.-M. L. (2002). Cardiac carbohydrate metabolism in Zucker diabetic fatty rats. Cardiovascular Research, 55(1), 104–112.

    Article  CAS  PubMed  Google Scholar 

  • Cheung, V. G., Conlin, L. K., Weber, T. M., Arcaro, M., Jen, K.-Y., Morley, M., et al. (2003). Natural variation in human gene expression assessed in lymphoblastoid cells. Nature Genetics, 33, 422–425.

    Article  CAS  PubMed  Google Scholar 

  • Choudhary, C., Kumar, C., Gnad, F., Nielsen, M. L., Rehman, M., Walther, T. C., et al. (2009). Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science, 325, 834–840.

    Article  CAS  PubMed  Google Scholar 

  • Christofk, H. R., Vander Heiden, M. G., Wu, N., Asara, J. M., & Cantley, L. C. (2008). Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature, 452, 181–186.

    Article  CAS  PubMed  Google Scholar 

  • Covassin, L., Jangalwe, S., Jouvet, N., Laning, J., Burzenski, L., Shultz, L. D., et al. (2013). Human immune system development and survival of non-obese diabetic (NOD)-scid IL2r gamma(null) (NSG) mice engrafted with human thymus and autologous haematopoietic stem cells. Clinical and Experimental Immunology, 174, 372–388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damhofer, H., Ebbing, E. A., Steins, A., Welling, L., Tol, J. A., Krishnadath, K. K., et al. (2015). Establishment of patient-derived xenograft models and cell lines for malignancies of the upper gastrointestinal tract. Journal of Translational Medicine, 13, 115.

    Article  PubMed  PubMed Central  Google Scholar 

  • Davidson, S. M., Papagiannakopoulos, T., Olenchock, B. A., Heyman, J. E., Keibler, M. A., Luengo, A., et al. (2016). Environment impacts the metabolic dependencies of Ras-driven non-small cell lung cancer. Cell Metabolism, 23, 517–528.

    Article  CAS  PubMed  Google Scholar 

  • de Graaf, R. A., Rothman, D. L., & Behar, K. L. (2011). State of the art direct C-13 and indirect H-1- C-13 NMR spectroscopy in vivo. A practical guide. NMR in Biomedicine, 24(8), 958–972.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • deGraaf, I. A. M., Olinga, P., deJager, M. H., Merema, M. T., deKanter, R., van de Kerkhof, E. G., et al. (2010). Preparation and incubation of precision-cut liver and intestinal slices for application in drug metabolism and toxicity studies. Nature Protocols, 5, 1540–1551.

    Article  CAS  Google Scholar 

  • Delitto, D., Perez, C., Han, S., Gonzalo, D. H., Pham, K., Knowlton, A. E., et al. (2015). Downstream mediators of the intratumoral interferon response suppress antitumor immunity, induce gemcitabine resistance and associate with poor survival in human pancreatic cancer. Cancer Immunology, Immunotherapy, 64(12), 1553–1563.

    Article  CAS  PubMed  Google Scholar 

  • Dixit, P., Jain, D. K., & Dumbwani, J. (2012). Standardization of an ex vivo method for determination of intestinal permeability of drugs using everted rat intestine apparatus. Journal of Pharmacological and Toxicological Methods, 65, 13–17.

    Article  CAS  PubMed  Google Scholar 

  • Fan, T. W.-M., Kucia, M., Jankowski, K., Higashi, R. M., Rataczjak, M. Z., Rataczjak, J., et al. (2008). Proliferating Rhabdomyosarcoma cells shows an energy producing anabolic metabolic phenotype compared with Primary Myocytes. Molecular Cancer, 7, 79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fan, T. W.-M., & Lane, A. N. (2016). Applications of NMR spectroscopy to systems biochemistry. Progress NMR Spectroscopy, 92, 18–53.

    Article  CAS  Google Scholar 

  • Fan, T. W.-M., Lane, A. N., & Higashi, R. M. (2016a). Stable isotope resolved metabolomics studies in ex vivo tissue slices. Bio-protocol, 6, e1730.

    PubMed  PubMed Central  Google Scholar 

  • Fan, T. W., Lane, A. N., Higashi, R. M., Farag, M. A., Gao, H., Bousamra, M., et al. (2009). Altered regulation of metabolic pathways in human lung cancer discerned by 13C stable isotope-resolved metabolomics (SIRM). Molecular Cancer, 8, 41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fan, T. W., Lane, A. N., Higashi, R. M., & Yan, J. (2011a). Stable isotope resolved metabolomics of lung cancer in a SCID mouse model. Metabolomics, 7(2), 257–269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan, T. W.-M., Lane, A. N., Higashi, R. M., & Yan, J. (2011b). Stable isotope resolved metabolomics of lung cancer in a SCID mouse model. Metabolomics, 7, 257–269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan, T. W.-M., Lorkiewicz, P., Sellers, K., Moseley, H. N. B., Higashi, R. M., & Lane, A. N. (2012a). Stable isotope-resolved metabolomics and applications to drug development. Pharmacology & Therapeutics, 133, 366–391.

    Article  CAS  Google Scholar 

  • Fan, T. W.-M., Tan, J. L., McKinney, M. M., & Lane, A. N. (2012b). Stable isotope resolved metabolomics analysis of ribonucleotide and RNA metabolism in human lung cancer cells. Metabolomics, 8(3), 517–527.

    Article  CAS  PubMed  Google Scholar 

  • Fan, T. W.-M., Warmoes, M. O., Sun, Q., Song, H., T, Turchan-Cholewo, J., Martin, J. T., et al. (2016b). Distinctly perturbed metabolic networks underlie differential tumor tissue damages induced by immune modulator β-glucan in a two-case ex vivo non-small cell lung cancer study. CSH Molecular Case Studies Journal. doi:10.1101/mcs.a000893.

  • Feenstra, J., Grobbee, D. E., Remme, W. J., & Stricker, B. H. C. (1999). Drug-induced heart failure. Journal of the American College of Cardiology, 33, 1152–1162.

    Article  CAS  PubMed  Google Scholar 

  • Fell, D. (1997). Understanding the control of metabolism (Frontiers in metabolism). London: Portland Press.

    Google Scholar 

  • Fogh, J. (Ed.). (1982). The nude mouse in experimental and clinical research. Cambridge: Academic Press.

    Google Scholar 

  • Freeman, B. A., & Oneil, J. J. (1984). Tissue-slices in the study of lung metabolism and toxicology. Environmental Health Perspectives, 56, 51–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gadian, D. G. (1986). In vivo NMR. In Supramolecular structure and function. Proceedings in life sciences (pp. 93–103).

  • Gadian, D. G. (1995). NMR and its applications to living systems (2nd ed.). Oxford: Oxford University Press.

    Google Scholar 

  • Gould, S. E., Junttila, M. R., & de Sauvage, F. J. (2015). Translational value of mouse models in oncology drug development. Nature Medicine, 21, 431–439.

    Article  CAS  PubMed  Google Scholar 

  • Guillaumond, F., Leca, J., Olivares, O., Lavaut, M.-N., Vidal, N., Berthezene, P., et al. (2013). Strengthened glycolysis under hypoxia supports tumor symbiosis and hexosamine biosynthesis in pancreatic adenocarcinoma. Proceedings of the National Academy of Sciences of the United States of America, 110(10), 3919–3924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahne, H., Gholami, A. M., & Kuster, B. (2012). Discovery of O-GlcNAc-modified proteins in published large-scale proteome data. Molecular and Cellular Proteomics, 11(10), 843–850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674.

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa, M., Kawai, K., Mitsui, T., Taniguchi, K., Monnai, M., Wakui, M., et al. (2011). The reconstituted ‘humanized liver’ in TK-NOG mice is mature and functional. Biochemical and Biophysical Research Communications, 405(3), 405–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hensley, C. T., Faubert, B., Yuan, Q., Lev-Cohain, N., Jin, E., Kim, J., et al. (2016). Metabolic heterogeneity in human lung tumors. Cell, 164, 681–694.

    Article  CAS  PubMed  Google Scholar 

  • Herzenberg, J. R. (2009). Renal toxicity of therapeutic drugs. Journal of Clinical Pathology, 62, 505–515.

    Article  PubMed  CAS  Google Scholar 

  • Hidalgo, M., Bruckheimer, E., Rajeshkumar, N. V., Garrido-Laguna, I., De Oliveira, E., Rubio-Viqueira, B., et al. (2011). A pilot clinical study of treatment guided by personalized tumorgrafts in patients with advanced cancer. Molecular Cancer Therapeutics, 10(8), 1311–1316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho, P.-C., Bihuniak, J. D., Macintyre, A. N., Staron, M., Liu, X., Amezquita, R., et al. (2016). Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell, 162(6), 1217–1228.

    Article  CAS  Google Scholar 

  • Hornbeck, P. V. (2015). PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Research, 43(D1), D512–D520.

    Article  PubMed  Google Scholar 

  • Hougardy, B. M. T., Reesink-Peters, N., van den Heuvel, F. A. J., ten Hoor, K. A., Hollema, H., de Vries, E. G. E., et al. (2008). A robust ex vivo model for evaluation of induction of apoptosis by rhTRAIL in combination with proteasome inhibitor MG132 in human premalignant cervical explants. International Journal of Cancer, 123(6), 1457–1465.

    Article  CAS  PubMed  Google Scholar 

  • Hu, S., Yoshihara, H. A. I., Bok, R., Zhou, J., Zhu, M. H., Kurhanewicz, J., et al. (2012). Use of hyperpolarized 1-C-13 pyruvate and 2-C-13 pyruvate to probe the effects of the anticancer agent dichloroacetate on mitochondrial metabolism in vivo in the normal rat. Magnetic Resonance Imaging, 30(10), 1367–1372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, K. Y., Su, M. G., Kao, H. J., Hsieh, Y. C., Jhong, J. H., Cheng, K. H., et al. (2016). dbPTM 2016: 10-year anniversary of a resource for post-translational modification of proteins. Nucleic Acids Research, 44(D1), D435–D446.

    Article  PubMed  Google Scholar 

  • Hyder, F., Fulbright, R. K., Shulman, R. G., & Rothman, D. L. (2013). Glutamatergic function in the resting awake human brain is supported by uniformly high oxidative energy. Journal of Cerebral Blood Flow and Metabolism, 33(3), 339–347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishida, Y., Yamasaki, C., Yanagi, A., Yoshizane, Y., Fujikawa, K., Watashi, K., et al. (2015). Novel robust in vitro hepatitis B virus infection model using fresh human hepatocytes isolated from humanized mice. American Journal of Pathology, 185(5), 1275–1285.

    Article  CAS  PubMed  Google Scholar 

  • Jack, J., Rotroff, D., & Motsinger-Reif, A. (2014). Lymphoblastoid cell lines models of drug response: Successes and lessons from this pharmacogenomic model. Current Molecular Medicine, 14(7), 833–840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jitrapakdee, S., St Maurice, M., Rayment, I., Cleland, W. W., Wallace, J. C., & Attwood, P. V. (2008). Structure, mechanism and regulation of pyruvate carboxylase. Biochemical Journal, 413, 369–387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keshari, K. R., Kurhanewicz, J., Bok, R., Larson, P. E. Z., Vigneron, D. B., & Wilson, D. M. (2011). Hyperpolarized C-13 dehydroascorbate as an endogenous redox sensor for in vivo metabolic imaging. Proceedings of the National Academy of Sciences of the United States of America, 108(46), 18606–18611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keshari, K. R., Sriram, R., Van Criekinge, M., Wilson, D. M., Wang, Z. J., Vigneron, D. B., et al. (2013). Metabolic reprogramming and validation of hyperpolarized C-13 lactate as a prostate cancer biomarker using a human prostate tissue slice culture bioreactor. Prostate, 73(11), 1171–1181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, J. W., & Dang, C. V. (2005). Multifaceted roles of glycolytic enzymes. Trends in Biochemical Sciences, 30(3), 142–150.

    Article  CAS  PubMed  Google Scholar 

  • Kirby, T. O., Rivera, A., Rein, D., Wang, M., Ulasov, I., Breidenbach, M., et al. (2004). A novel ex vivo model system for evaluation of conditionally replicative adenoviruses therapeutic efficacy and toxicity. Clinical Cancer Research, 10(24), 8697–8703.

    Article  CAS  PubMed  Google Scholar 

  • Kopetz, S., Lemos, R., & Powis, G. (2012). The promise of patient-derived xenografts: The best laid plans of mice and men. Clinical Cancer Research, 18, 5160–5162.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lane, A. N., Fan, T. W.-M., Bousamra, M, I. I., Higashi, R. M., Yan, J., & Miller, D. M. (2011). Clinical applications of stable isotope-resolved metabolomics (SIRM) in non-small cell lung cancer. OMICS: A Journal of Integrative Biology, 15, 173–182.

    Article  CAS  PubMed  Google Scholar 

  • Lane, A. N., Fan, T. W., & Higashi, R. M. (2008a). Isotopomer-based metabolomic analysis by NMR and mass spectrometry. Biophysical Tools for Biologists., 84, 541–588.

    CAS  Google Scholar 

  • Lane, A. N., Fan, T. W.-M., Higashi, R. M., Deleeuw, L., & Yang, T. H. (2008). Stable isotope tracing in metabolic pathways. Paper presented at the modelling complex biological systems in the context of the genome, Lille.

  • Lane, A. N., Fan, T. W.-M., Xie, X., Moseley, H. N., & Higashi, R. M. (2009). Stable isotope analysis of lipid biosynthesis by high resolution mass spectrometry and NMR. Analytica Chimica Acta, 651, 201–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lane, A. N., Yan, J., & Fan, T. W.-M. (2015). 13C tracer studies of metabolism in mouse tumor xenografts. Bio-protocol, 5, e1650.

    Google Scholar 

  • Ledford, H. (2015). CRISPR, the disruptor. Nature, 522, 20–24.

    Article  CAS  PubMed  Google Scholar 

  • Lee, K. M., Choi, K. H., & Ouellette, M. M. (2004). Use of exogenous hTERT to immortalize primary human cells. Cytotechnology, 45, 33–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, J., Cuddihy, M. J., & Kotov, N. A. (2008). Three-dimensional cell culture matrices: State of the art. Tissue Engineering Part B: Reviews, 14(1), 61–86.

    Article  CAS  Google Scholar 

  • Lee, G. Y., Kenny, P. A., Lee, E. H., & Bissell, M. J. (2007). Three-dimensional culture models of normal and malignant breast epithelial cells. Nature Methods, 4, 359–365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leithner, K., Wohlkoenig, C., Stacher, E., Lindenmann, J., Hofmann, N. A., Galle, B., et al. (2014). Hypoxia increases membrane metallo-endopeptidase expression in a novel lung cancer ex vivo model-role of tumor stroma cells. BMC Cancer, 14, 40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lincet, J., & Icard, P. (2015). How do glycolytic enzymes favour cancer cell proliferation by nonmetabolic functions? Oncogene, 34, 3751–3759.

    Article  CAS  PubMed  Google Scholar 

  • Maher, E. A., Marin-Valencia, I., Bachoo, R. M., Mashimo, T., Raisanen, J., Hatanpaa, K. J., et al. (2012). Metabolism of U-13C glucose in human brain tumors in vivo. NMR in Biomedicine, 25(11), 1234–1244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marin, R., Perez, J. C. G., Ralph, S. J., Rodriguez-Enriquez, S., & Moreno-Sanchez, R. (2009). HIF-1α modulates energy metabolism in cancer cells by inducing over-expression of specific glycolytic isoforms. Mini Reviews in Medicinal Chemistry, 9, 1084–1101.

    Article  Google Scholar 

  • Martinez-Garcia, R., Juan, D., Rausell, A., Munoz, M., Banos, N., Menendez, C., et al. (2014). Transcriptional dissection of pancreatic tumors engrafted in mice. Genome Medicine, 6, 27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mason, G. F., Petersen, K. F., de Graaf, R. A., Kanamatsu, T., Otsuki, T., & Rothman, D. L. (2002). A comparison of C-13 NMR measurements of the rates of glutamine synthesis and the tricarboxylic acid cycle during oral and intravenous administration of 1-C-13 glucose. Brain Research Protocols, 10(3), 181–190.

    Article  Google Scholar 

  • Mathupala, S. P., Ko, Y. H., & Pedersen, P. L. (2010). The pivotal roles of mitochondria in cancer: Warburg and beyond and encouraging prospects for effective therapies. Biochimica et Biophysica Acta, 1797, 1225–1230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maykel, J., Liu, J. H., Li, H., Shultz, L. D., Greiner, D. L., & Houghton, J. (2014). NOD-scidIl2rg (tm1Wjl) and NOD-Rag1 (null) Il2rg (tm1Wjl): a model for stromal cell-tumor cell interaction for human colon cancer. Digestive Diseases and Sciences, 59, 1169–1179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCracken, K. W., Cata, E. M., Crawford, C. M., Sinagoga, K. L., Schumacher, M., Rockich, B. E., et al. (2014). Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature, 516(7531), 400–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mestas, J., & Hughes, C. C. W. (2004). Of mice and not men: Differences between mouse and human immunology. Journal of Immunology, 172, 2731–2738.

    Article  CAS  Google Scholar 

  • Minárik, P., Tomásková, N., Kollárová, M., & Antalik, M. (2002). Malate dehydrogenases–structure and function. General Physiology and Biophysics, 21, 257–265.

    PubMed  Google Scholar 

  • Mitchell, J. M., Fan, T. W.-M., Lane, A. N., & Moseley, H. N. B. (2014). Development and in silico evaluation of large-scale metabolite identification methods using functional group detection for metabolomics. Frontiers in Genetics, 5, 273.

    Google Scholar 

  • Moore, C. B., Guthrie, E. H., Huang, M. T.-H., & Taxman, D. J. (2010). Short hairpin RNA (shRNA): Design, delivery, and assessment of gene knockdown. Methods in Molecular Biology, 629, 141–158.

    PubMed  PubMed Central  Google Scholar 

  • Muruganandan, S., & Sinal, C. J. (2008). Mice as clinically relevant models for the study of cytochrome P450-dependent metabolism. Clinical Pharmacology and Therapeutics, 83, 818–828.

    Article  CAS  PubMed  Google Scholar 

  • Natoli, M., Leoni, B. D., D’Agnano, I., Zucco, F., & Felsani, A. (2012). Good Caco-2 cell culture practices. Toxicology in Vitro, 26, 1243–1246.

    Article  CAS  PubMed  Google Scholar 

  • Neitzel, H. (1986). A routine method for the establishment of permanent growing lymphoblastoid cell lines. Human Genetics, 73, 320–326.

    Article  CAS  PubMed  Google Scholar 

  • Nelson, S. J., Kurhanewicz, J., Vigneron, D. B., Larson, P. E. Z., Harzstark, A. L., Ferrone, M., et al. (2013). Metabolic imaging of patients with prostate cancer using hyperpolarized 1-C-13 pyruvate. Science Translational Medicine, 5, 198.

    Article  CAS  Google Scholar 

  • Niu, N. F., & Wang, L. W. (2015). In vitro human cell line models to predict clinical response to anticancer drugs. Pharmacogenomics, 16(3), 273–285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostapowicz, G., Fontana, R. J., Schiødt, F. V., Larson, A., Davern, T. J., Han, S. H., et al. (2002). Results of a prospective study of acute liver failure at 17 tertiary care centers in the United States. Annals of Internal Medicine, 137, 947–954.

    Article  PubMed  Google Scholar 

  • Pajic, A., Spitkovsky, D., Christoph, B., Kempkes, B., Schuhmacher, M., Staege, M. S., et al. (2000). Cell cycle activation by c-myc in a Burkitt lymphoma model cell line. International Journal of Cancer, 87, 787–793.

    Article  CAS  PubMed  Google Scholar 

  • Patel, A. B., de Graaf, R. A., Mason, G. F., Rothman, D. L., Shulman, R. G., & Behar, K. L. (2005). The contribution of GABA to glutamate/glutamine cycling and energy metabolism in the rat cortex in vivo. Proceedings of the National Academy of Sciences of the United States of America, 102(15), 5588–5593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pawlik, T. M., Souba, W. W., Sweeney, T. J., & Bode, B. P. (2000). Amino acid uptake and regulation in multicellular hepatoma spheroids. Journal of Surgical Research, 91(1), 15–25.

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer, T., Soyer, O. S., & Bonhoeffer, S. (2005). The evolution of connectivity in metabolic networks. PLoS Biology, 3, e228.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Poulo, J. M., Elston, T., Lane, A. N., Macdonald, J. M., & Cascante, M. (2012). Introduction to metabolic control analysis (MCA). In T. W.-M. Fan, R. M. Higashi, & A. N. Lane (Eds.), Handbook of metabolomics. New York: Humana Press.

    Google Scholar 

  • Ravi, M., Paramesh, V., Kaviya, S. R., Anuradha, E., & Paul Solomon, F. D. P. (2014). 3D cell culture systems: advantages and applications. Journal of Cellular Physiology, 230, 16–26.

    Article  CAS  Google Scholar 

  • Ren, J. G., Seth, P., Clish, C. B., Lorkiewicz, P. K., Higashi, R. M., Lane, A. N., et al. (2014). Knockdown of malic enzyme 2 suppresses lung tumor growth, induces differentiation and impacts PI3K/AKT signaling. Scientific Reports, 4, 5414.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richmond, A., & Su, Y. (2008). Mouse xenograft models vs GEM models for human cancer therapeutics. Disease Models & Mechanisms, 1(2–3), 78–82.

    Article  Google Scholar 

  • Roberts, J. K. M., Lane, A. N., Clark, R. A., & Nieman, R. H. (1985). Relationships between the rate of synthesis of ATP and the concentrations of reactants and products of ATP hydrolysis in maize root-tips, determined by P-31 nuclear magnetic-resonance. Archives of Biochemistry and Biophysics, 240(2), 712–722.

    Article  CAS  PubMed  Google Scholar 

  • Rose, J., Martin, C., MacDonald, T., & Ellis, C. (2006). High-resolution intravital NADH fluorescence microscopy allows measurements of tissue bioenergetics in rat ileal mucosa. Microcirculation, 13(1), 41–47.

    Article  CAS  PubMed  Google Scholar 

  • Ruprecht, B., & Lemeer, S. (2014). Proteomic analysis of phosphorylation in cancer. Expert Review of Proteomics, 11(3), 259–267.

    Article  CAS  PubMed  Google Scholar 

  • Sander, J. D., & Joung, J. K. (2014). CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology, 32, 347–355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saunders, T. (2011). Inducible transgenic mouse models. Methods in Molecular Biology, 693, 103–115.

    Article  CAS  PubMed  Google Scholar 

  • Savageau, M. A., Voit, E. O., & Irvine, D. H. (1987a). Biochemical systems-theory and metabolic control-theory. 1. Fundamental similarities and differences. Mathematical Biosciences, 86(2), 127–145.

    Article  CAS  Google Scholar 

  • Savageau, M. A., Voit, E. O., & Irvine, D. H. (1987b). Biochemical systems-theory and metabolic control-theory. 2. The role of summation and connectivity relationships. Mathematical Biosciences, 86(2), 147–169.

    Article  CAS  Google Scholar 

  • Scaduto, R. C., & Davis, E. J. (1985). Serine synthesis by an isolated perfused rat kidney preparation. Biochemical Journal, 230, 303–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott, C. L., Becker, M. A., Haluska, P., & Samimi, G. (2013). Patient-derived xenograft models to improve targeted therapy in epithelial ovarian cancer treatment. Frontiers in Oncology, 3, 295.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sellers, K., Fox, M. P., Bousamra, M, I. I., Slone, S. P., Higashi, R. M., Miller, D. M., et al. (2015). Pyruvate carboxylase is critical for non-small-cell lung cancer proliferation. Journal of Clinical Investigation, 125(2), 687–698.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shultz, L. D., Ishikawa, F., & Greiner, D. L. (2007). Humanized mice in translational biomedical research. Nature Reviews Immunology, 7, 118–130.

    Article  CAS  PubMed  Google Scholar 

  • Siolas, D., & Hannon, G. J. (2013). Patient derived tumor xenografts: Transforming clinical samples into mouse models. Cancer Research, 73, 5315–5319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonveaux, P., Vegran, F., Schroeder, T., Wergin, M. C., Verrax, J., Rabbani, Z. N., et al. (2008). Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. The Journal of Clinical Investigation, 118(12), 3930–3942.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spence, J. R., Mayhew, C. N., Rankin, S. A., Kuhar, M. F., Vallance, J. E., Tolle, K., et al. (2011). Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature, 470(7332), 105–109.

    Article  PubMed  CAS  Google Scholar 

  • Sriram, G., Martinez, J. A., McCabe, E. R. B., Liao, J. C., & Dipple, K. M. (2005). Single-gene disorders: What role could moonlighting enzymes play? American Journal of Human Genetics, 76, 911–924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stern, R., Shuster, S., Neudecker, B. A., & Formby, B. (2002). Lactate stimulates fibroblast expression of hyaluronan and CD44: the Warburg effect revisited. Experimental Cell Research, 276(1), 24–31.

    Article  CAS  PubMed  Google Scholar 

  • Stringari, C., Donovan, P., & Gratton, E. (2012). Phasor FLIM metabolic mapping of stem cells and cancer cells in live tissues. In A. Periasamy, K. Konig, & P. T. C. So (Eds.), Multiphoton microscopy in the biomedical sciences Xii (Vol. 8226, Proceedings of SPIE).

  • Stringari, C., Wang, H., Geyfman, M., Crosignani, V., Kumar, V., Takahashi, J. S., et al. (2015). In vivo single-cell detection of metabolic oscillations in stem cells. Cell Reports, 10(1), 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Subbaraman, N. (2011). Flawed arithmetic on drug development costs. Nature Biotechnology, 29(5), 381.

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto, M., Tahara, H., Ide, T., & Furuichi, Y. (2004). Steps involved in immortalization and tumorigenesis in human B-lymphoblastoid cell lines transformed by Epstein-Barr virus. Cancer Research, 64, 3361–3364.

    Article  CAS  PubMed  Google Scholar 

  • Tateno, C., Kawase, Y., Tobita, Y., Hamamura, S., Ohshita, H., Yokomichi, H., et al. (2015a). Generation of novel chimeric mice with humanized livers by using hemizygous cDNA-uPA/SCID Mice. Plos One, 10(11), e0142145.

  • Tateno, C., Yamamoto, T., Utoh, R., Yamasaki, C., Ishida, Y., Myoken, Y., et al. (2015b). Chimeric mice with hepatocyte-humanized liver as an appropriate model to study human peroxisome proliferator-activated receptor-alpha. Toxicologic Pathology, 43(2), 233–248.

    Article  CAS  PubMed  Google Scholar 

  • Tateno, C., Yoshizane, Y., Saito, N., Kataoka, M., Utoh, R., Yamasaki, C., et al. (2004). Near completely humanized liver in mice shows human-type metabolic responses to drugs. American Journal of Pathology, 165(3), 901–912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Telang, S., Lane, A. N., Nelson, K. K., Arumugam, S., & Chesney, J. A. (2007). The oncoprotein H-RasV12 increases mitochondrial metabolism. Molecular Cancer, 6, 77–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Telang, S., Yalcin, A., Clem, A. L., Bucala, R., Lane, A. N., Eaton, J. W., et al. (2006). Ras transformation requires metabolic control by 6-phosphofructo-2-kinase. Oncogene, 25(55), 7225–7234.

    Article  CAS  PubMed  Google Scholar 

  • Tentler, J. J., Tan, A. C., Weekes, C. D., Jimeno, A., Leong, S., & Pitts, T. M. (2012). Patient-derived tumour xenografts as models for oncology drug development. Nature Reviews Clinical Oncology, 9, 338–350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thayanithy, V., Babatunde, V., Dickson, E. L., Wong, P., Oh, S., Ke, X., et al. (2014). Tumor exosomes induce tunneling nanotubes in lipid raft-enriched regions of human mesothelioma cells. Experimental Cell Research, 323(1), 178–188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thelwall, P. E., Simpson, N. E., Rabbani, Z. N., Clark, M. D., Pourdeyhimi, R., Macdonald, J. M., et al. (2012). In vivo MR studies of glycine and glutathione metabolism in a rat mammary tumor. NMR in Biomedicine, 25, 271–278.

    Article  CAS  PubMed  Google Scholar 

  • Thelwall, P. E., Yemin, A. Y., Gillian, T. L., Simpson, N. E., Kasibhatla, M. S., Rabbani, Z. N., et al. (2005). Noninvasive in vivo detection of glutathione metabolism in tumors. Cancer Research, 65(22), 10149–10153.

    Article  CAS  PubMed  Google Scholar 

  • Uhlen, M., Fagerberg, L., Hallstrom, B. M., Lindskog, C., Oksvold, P., Mardinoglu, A., et al. (2015). Tissue-based map of the human proteome. Science, 347(6220), 394.

    Article  CAS  Google Scholar 

  • Unger, F. T., Bentz, S., Krüger, J., Rosenbrock, C., Schaller, J., Pursche, K., et al. (2015). Precision cut cancer tissue slices in anti-cancer drug testing. Journal of Molecular Pathophysiology, 4, 108–121.

    Article  Google Scholar 

  • Unger, F. T., Krueger, J., Schaller, J., Uhlig, P., Juhl, H., & David, K. A. (2014). Precision cut cancer tissue slices as a preclinical drug testing platform. European Journal of Cancer, 50, S166.

    Article  Google Scholar 

  • Uppal, A., & Gupta, P. K. (2003). Measurement of NADH concentration in normal and malignant human tissues from breast and oral cavity. Biotechnology and Applied Biochemistry, 37, 45–50.

    Article  CAS  PubMed  Google Scholar 

  • Uriel, J. (1979). Retrodifferentiation and the fetal patterns of gene expression in cancer. Advances in Cancer Research, 29, 127–174.

    Article  CAS  PubMed  Google Scholar 

  • Vaira, V., Fedele, G., Pyne, S., Fasoli, E., Zadra, G., Bailey, D., et al. (2010). Preclinical model of organotypic culture for pharmacodynamic profiling of human tumors. Proceedings of the National Academy of Sciences of the United States of America, 107(18), 8352–8356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walenta, S., Schroeder, T., & Mueller-Klieser, W. (2004). Lactate in solid malignant tumors: Potential basis of a metabolic classification in clinical oncology. Current Medicinal Chemistry, 11(16), 2195–2204.

    Article  CAS  PubMed  Google Scholar 

  • Warburg, O. (1923). Versuche an überlebendem Carcinomgewebe (Methoden). Biochem. Zeitschr., 142, 317–333.

    CAS  Google Scholar 

  • Wehrle, J. P., Ng, C. E., McGovern, K. A., Aiken, N. R., Shungu, D. C., Chance, E. M., et al. (2000). Metabolism of alternative substrates and the bioenergetic status of EMT6 tumor cell spheroids. NMR in Biomedicine, 13(6), 349–360.

    Article  CAS  PubMed  Google Scholar 

  • Whittle, J. R., Lewis, M. T., Lindeman, G. J., & Visvader, J. E. (2015). Patient-derived xenograft models of breast cancer and their predictive power. Breast Cancer Research, 17, 17.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilding, J. L., & Bodmer, W. F. (2014). Cancer cell lines for drug discovery and development. Cancer Research, 74(9), 2377–2384.

    Article  CAS  PubMed  Google Scholar 

  • Willyard, C. (2015). The boom in mini stomachs, brains, breasts, kidneys and more. Nature, 523, 520–522.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, D. M., & Kurhanewicz, J. (2014). Hyperpolarized C-13 MR for molecular imaging of prostate cancer. Journal of Nuclear Medicine, 55(10), 1567–1572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winnike, J. H., Pediaditakis, P., Wolak, J. E., McClelland, R. W., Watkins, P. B., & Macdonald, J. M. (2012). Stable isotope resolved metabolomics of primary human hepatocytes reveals a stressed phenotype. Metabolomics, 8, 34–49.

    Article  CAS  Google Scholar 

  • Wolak, J., Rahimi-Keshari, K., Jeffries, R. E., Joy, M. P., Todd, A., Pediatikakis, P., et al. (2012). Noninvasive fluxomics in mammals by nuclear magnetic resonance spectroscopy. In T. W.-M. Fan, A. N. Lane, & R. M. Higashi (Eds.), The handbook of metabolomics (pp. 321–392). New York: Springer.

    Chapter  Google Scholar 

  • Wong, N. C., Bhadri, V. A., Maksimovic, J., Parkinson-Bates, M., Ng, J., Craig, J. M., et al. (2014). Stability of gene expression and epigenetic profiles highlights the utility of patient-derived paediatric acute lymphoblastic leukaemia xenografts for investigating molecular mechanisms of drug resistance. BMC Genomics, 15, 416.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wysoczynski, M., & Ratajczak, M. Z. (2009). Lung cancer secreted microvesicles: Underappreciated modulators of microenvironment in expanding tumors. International Journal of Cancer, 125(7), 1595–1603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie, H., Hanai, J., Ren, J.-G., Kats, L., Burgess, K., Bhargava, P., et al. (2014). Targeting lactate dehydrogenase-A (LDH-A) inhibits tumorigenesis and tumor progression in mouse models of lung cancer and impacts tumor initiating cells. Cell Metabolism, 19, 795–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, D., & Peltz, G. (2016). Can humanized mice predict drug “behavior” in humans? Annual Review of Pharmacology and Toxicology, 56, 323–338.

    Article  CAS  PubMed  Google Scholar 

  • Yoshizato, K., & Tateno, C. (2009). In vivo modeling of human liver for pharmacological study using humanized mouse. Expert Opinion on Drug Metabolism & Toxicology, 5(11), 1435–1446.

    Article  CAS  Google Scholar 

  • Yue, F., Cheng, Y., Breschi, A., Vierstra, J., Wu, W., Ryba, T., et al. (2014). A comparative encyclopedia of DNA elements in the mouse genome. Nature, 515, 355–364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zachara, N. E., & Hart, G. W. (2004). O-GlcNAc a sensor of cellular state: the role of nucleocytoplasmic glycosylation in modulating cellular function in response to nutrition and stress. Biochimica Et Biophysica Acta-General Subjects, 1673(1–2), 13–28.

    Article  CAS  Google Scholar 

  • Zamanakou, M., Germenis, A. E., & Karanikas, V. (2007). Tumor immune escape mediated by indoleamine 2,3-dioxygenase. Immunology Letters, 111(2), 69–75.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH P01CA163223-01A1, 1U24DK097215-01A1, 1R01ES022191-01 and 1R21ES025669-01.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrew N. Lane or Teresa W.-M. Fan.

Ethics declarations

Conflict of interest

Andrew Lane, Richard Higashi and Teresa Fan declare no conflicts of interest.

Informed consent

Human tissues reported in Fig. 3 were obtained with informed consent under an IRB-approved protocol at the University of Kentucky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lane, A.N., Higashi, R.M. & Fan, T.WM. Preclinical models for interrogating drug action in human cancers using Stable Isotope Resolved Metabolomics (SIRM). Metabolomics 12, 118 (2016). https://doi.org/10.1007/s11306-016-1065-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-016-1065-y

Keywords

Navigation