Skip to main content

Advertisement

Log in

An integrated targeted metabolomic platform for high-throughput metabolite profiling and automated data processing

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Multiple reaction monitoring (MRM)-based targeted metabolomics can simultaneously analyze up to hundreds of metabolites with high-throughput, good reproducibility, and wide dynamic range. However, when hundreds or thousands of MRM transitions are measured with tens to hundreds of biological samples, the complexity of MRM dataset acquired is no longer amenable to manual evaluation, and presents a challenge for targeted metabolomics. Here, we developed an R package, namely MRMAnalyzer, to process large set of MRM-based targeted metabolomics data automatically without any manual intervention. To demonstrate our MRMAnalyzer program, we first developed a targeted metabolomic method that simultaneously analyzes 182 metabolites in one 15-min LC run, and demonstrated the data processing procedures using MRMAnalyzer. The data processing steps include “pseudo” accurate m/z transformation, peak detection and alignment, metabolite identification, quality control check and statistical analysis. Finally, a targeted metabolomic assay was designed and integrated with MRMAnalyzer to profile the metabolic changes in Escherichia coli subjected to the protein expression. The generated MRM dataset consisting of more than 8000 MRM transitions were readily processed using MRMAnalyzer within 20 min without any manual intervention. Fourty seven out of 140 detected metabolites, enriched in six metabolic pathways, were found significantly affected in E. coli metabolome. In summary, a targeted metabolomic platform is developed for high-throughput metabolite profiling and automated data processing, and the MRMAnalyzer program is a high efficient informatics tool for large scale targeted metabolomics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bajad, S. U., Lu, W. Y., Kimball, E. H., Yuan, J., Peterson, C., & Rabinowitz, J. D. (2006). Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mass spectrometry. Journal of Chromatography A, 1125(1), 76–88. doi:10.1016/j.chroma.2006.05.019.

    Article  CAS  PubMed  Google Scholar 

  • Buescher, J. M., Moco, S., Sauer, U., & Zamboni, N. (2010). Ultrahigh performance liquid chromatography-tandem mass spectrometry method for fast and robust quantification of anionic and aromatic metabolites. Analytical Chemistry, 82(11), 4403–4412. doi:10.1021/Ac100101d.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Q., Park, H. C., Goligorsky, M. S., Chander, P., Fischer, S. M., & Gross, S. S. (2012). Untargeted plasma metabolite profiling reveals the broad systemic consequences of xanthine oxidoreductase inactivation in mice. PLoS ONE, 7(6), e37149. doi:10.1371/journal.pone.0037149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clasquin, M. F., Melamud, E., & Rabinowitz, J. D. (2012). LC-MS data processing with MAVEN: a metabolomic analysis and visualization engine. Current Protocols Bioinformatics, 14(Unit14), 11. doi:10.1002/0471250953.bi1411s37.

    Google Scholar 

  • Dettmer, K., Aronov, P. A., & Hammock, B. D. (2007). Mass spectrometry-based metabolomics. Mass Spectrometry Reviews, 26(1), 51–78. doi:10.1002/Mas.20108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudley, E., Yousef, M., Wang, Y., & Griffiths, W. J. (2010). Targeted metabolomics and mass spectrometry. Advances in Protein Chemistry and Structural Biology, 80, 45–83. doi:10.1016/S1876-1623(10)80002-1.

    Article  CAS  PubMed  Google Scholar 

  • Fiehn, O. (2002). Metabolomics—The link between genotypes and phenotypes. Plant Molecular Biology, 48(1–2), 155–171. doi:10.1023/A:1013713905833.

    Article  CAS  PubMed  Google Scholar 

  • Horai, H., Arita, M., Kanaya, S., Nihei, Y., Ikeda, T., Suwa, K., et al. (2010). MassBank: A public repository for sharing mass spectral data for life sciences. Journal of Mass Spectrometry, 45(7), 703–714. doi:10.1002/jms.1777.

    Article  CAS  PubMed  Google Scholar 

  • Katajamaa, M., Miettinen, J., & Oresic, M. (2006). MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics, 22(5), 634–636. doi:10.1093/bioinformatics/btk039.

    Article  CAS  PubMed  Google Scholar 

  • Kvitvang, H. F. N., Andreassen, T., Adam, T., Villas-Boas, S. G., & Bruheim, P. (2011). Highly sensitive GC/MS/MS method for quantitation of amino and nonamino organic acids. Analytical Chemistry, 83(7), 2705–2711. doi:10.1021/Ac103245b.

    Article  CAS  PubMed  Google Scholar 

  • Lenz, E. M., & Wilson, I. D. (2007). Analytical strategies in metabonomics. Journal of Proteome Research, 6(2), 443–458. doi:10.1021/Pr0605217.

    Article  CAS  PubMed  Google Scholar 

  • Locasale, J. W., Melman, T., Song, S., Yang, X., Swanson, K. D., Cantley, L. C., et al. (2012). Metabolomics of human cerebrospinal fluid identifies signatures of malignant glioma. Molecular & Cellular Proteomics, 11(6), M111 014688, doi:10.1074/mcp.M111.014688.

  • Lommen, A. (2009). MetAlign: Interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing. Analytical Chemistry, 81(8), 3079–3086. doi:10.1021/Ac900036d.

    Article  CAS  PubMed  Google Scholar 

  • MacLean, B., Tomazela, D. M., Shulman, N., Chambers, M., Finney, G. L., Frewen, B., et al. (2010). Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics, 26(7), 966–968. doi:10.1093/bioinformatics/btq054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazzarino, M., de la Torre, X., & Botre, F. (2008). A screening method for the simultaneous detection of glucocorticoids, diuretics, stimulants, anti-oestrogens, beta-adrenergic drugs and anabolic steroids in human urine by LC-ESI-MS/MS. Analytical and Bioanalytical Chemistry, 392(4), 681–698. doi:10.1007/s00216-008-2292-5.

    Article  CAS  PubMed  Google Scholar 

  • Mezey, E., Dehejia, A., Harta, G., Papp, M. I., Polymeropoulos, M. H., & Brownstein, M. J. (1998). Alpha synuclein in neurodegenerative disorders: Murderer or accomplice? Nature Medicine, 4(7), 755–757. doi:10.1038/Nm0798-755.

    Article  CAS  PubMed  Google Scholar 

  • Nicholson, J. K., & Lindon, J. C. (2008). Systems biology—Metabonomics. Nature, 455(7216), 1054–1056. doi:10.1038/4551054a.

    Article  CAS  PubMed  Google Scholar 

  • Patti, G. J., Yanes, O., & Siuzdak, G. (2012). Metabolomics: The apogee of the omics trilogy. Nature Reviews Molecular Cell Biology, 13(4), 263–269. doi:10.1038/Nrm3314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pernet, C., Munoz, J., & Bessis, D. (2015). PENS (papular epidermal nevus with “skyline” basal cell layer). Annales de Dermatologie et de Venereologie, 142(1), 41–45. doi:10.1016/j.annder.2014.09.003.

    Article  CAS  PubMed  Google Scholar 

  • Rabinowitz, J. D., & Silhavy, T. J. (2013). Systems biology: Metabolite turns master regulator. Nature, 500(7462), 283–284. doi:10.1038/nature12544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiter, L., Rinner, O., Picotti, P., Huttenhain, R., Beck, M., Brusniak, M. Y., et al. (2011). mProphet: automated data processing and statistical validation for large-scale SRM experiments. Nature Methods, 8(5), 430–435. doi:10.1038/nmeth.1584.

    Article  CAS  PubMed  Google Scholar 

  • Smith, C. A., O’Maille, G., Want, E. J., Qin, C., Trauger, S. A., Brandon, T. R., et al. (2005). METLIN: a metabolite mass spectral database. Therapeutic Drug Monitoring, 27(6), 747–751.

    Article  CAS  PubMed  Google Scholar 

  • Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R., & Siuzdak, G. (2006). XCMS: Processing mass spectrometry data for metabolite profiling using Nonlinear peak alignment, matching, and identification. Analytical Chemistry, 78(3), 779–787. doi:10.1021/Ac051437y.

    Article  CAS  PubMed  Google Scholar 

  • Tautenhahn, R., Bottcher, C., & Neumann, S. (2008). Highly sensitive feature detection for high resolution LC/MS. BMC Bioinformatics,. doi:10.1186/1471-2105-9-504.

    Google Scholar 

  • Tautenhahn, R., Cho, K., Uritboonthai, W., Zhu, Z. J., Patti, G. J., & Siuzdak, G. (2012). An accelerated workflow for untargeted metabolomics using the METLIN database. Nature Biotechnology, 30(9), 826–828. doi:10.1038/Nbt.2348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tautenhahn, R., Patti, G. J., Kalisiak, E., Miyamoto, T., Schmidt, M., Lo, F. Y., et al. (2011). metaXCMS: second-order analysis of untargeted metabolomics data. Analytical Chemistry, 83(3), 696–700. doi:10.1021/ac102980g.

    Article  CAS  PubMed  Google Scholar 

  • Tsugawa, H., Arita, M., Kanazawa, M., Ogiwara, A., Bamba, T., & Fukusaki, E. (2013). MRMPROBS: A data assessment and metabolite identification tool for large-scale multiple reaction monitoring based widely targeted metabolomics. Analytical Chemistry, 85(10), 5191–5199. doi:10.1021/Ac400515s.

    Article  CAS  PubMed  Google Scholar 

  • Tsugawa, H., Kanazawa, M., Ogiwara, A., & Arita, M. (2014). MRMPROBS suite for metabolomics using large-scale MRM assays. Bioinformatics, 30(16), 2379–2380. doi:10.1093/bioinformatics/btu203.

    Article  CAS  PubMed  Google Scholar 

  • Wei, R., Li, G. D., & Seymour, A. B. (2010). High-throughput and multiplexed LC/MS/MRM method for targeted metabolomics. Analytical Chemistry, 82(13), 5527–5533. doi:10.1021/Ac100331b.

    Article  CAS  PubMed  Google Scholar 

  • Wong, J. W., Abuhusain, H. J., McDonald, K. L., & Don, A. S. (2012). MMSAT: Automated quantification of metabolites in selected reaction monitoring experiments. Analytical Chemistry, 84(1), 470–474. doi:10.1021/ac2026578.

    Article  CAS  PubMed  Google Scholar 

  • Xia, J. G., Psychogios, N., Young, N., & Wishart, D. S. (2009). MetaboAnalyst: A web server for metabolomic data analysis and interpretation. Nucleic Acids Research, 37, W652–W660. doi:10.1093/Nar/Gkp356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia, J. G., & Wishart, D. S. (2011). Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nature Protocols, 6(6), 743–760. doi:10.1038/nprot.2011.319.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, M., Breitkopf, S. B., Yang, X. M., & Asara, J. M. (2012). A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nature Protocols, 7(5), 872–881. doi:10.1038/nprot.2012.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, Z. J., Schultz, A. W., Wang, J. H., Johnson, C. H., Yannone, S. M., Patti, G. J., et al. (2013). Liquid chromatography quadrupole time-of-flight mass spectrometry characterization of metabolites guided by the METLIN database. Nature Protocols, 8(3), 451–460. doi:10.1038/nprot.2013.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the financial support provided by the startup funding from Interdisciplinary Research Center on Biology and Chemistry (IRCBC), Chinese Academy of Sciences (CAS). Z.-J. Z. is also supported by Thousand Youth Talents Program (The Recruitment Program of Global Youth Experts from Chinese government). The project is also financially supported by Agilent Technologies Thought Leader Award.

Compliance with ethical requirements

All institutional and national guidelines for the care and use of biological samples were followed. The data acquired were in accordance with appropriate ethical requirements.

Conflict of interest

There are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Jiang Zhu.

Additional information

Yuping Cai and Kai Weng have contributed equally.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Y., Weng, K., Guo, Y. et al. An integrated targeted metabolomic platform for high-throughput metabolite profiling and automated data processing. Metabolomics 11, 1575–1586 (2015). https://doi.org/10.1007/s11306-015-0809-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-015-0809-4

Keywords

Navigation