Skip to main content
Log in

Postprandial metabolic events in mini-pigs: new insights from a combined approach using plasma metabolomics, tissue gene expression, and enzyme activity

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

To unravel metabolic adaptations preceding the occurrence of metabolic dysregulations, a nutritional challenge appears as the best tool capable to reveal metabolic disturbances compared to single-point measurements at the static fasting (PA) state. The aim of the present work was to study the metabolic trajectories at the postprandial (PP) state in a relevant human nutrition animal model combining plasma metabolome analysis with classical metabolism exploration tools. In a first trial, three mini pigs were fed a test meal and arterial blood samples withdrawn before and over 4 h following the meal for plasma metabolites analysis (LC–MS and classical biochemistry). In a second trial, three mini-pigs were euthanized after an overnight fasting and three others 1:15 h after the test meal. The metabolism was explored at the molecular (mRNA levels), biochemical (enzyme activities) and signalling (phosphorylation status) levels in the liver and muscle. As expected, and in accordance with alterations in plasma glucose, urea levels, gluconeogenesis/glycolysis/lipid and amino acid (AA) oxidation genes expression and enzymes activities, the metabolomic approach discriminated the PA from the PP state (R2Ycum = 0.991; Q2Ycum = 0.921). More interestingly hierarchical cluster analysis revealed that the PP metabolome included actually four types of kinetic profiles. Further, PLS-DA analysis revealed a two-step pattern: 1–2  and 3–4 h (R2Ycum = 0.837; Q2cum = 0.635). Among the molecules explaining this discrimination, several AAs and phospholipid species were highlighted and their significance in PP metabolism discussed. Our data showed that the combination of these approaches in mini-pigs could be used to investigate PP metabolic adaptations in various physiological and patho-physiological states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alegre, M., Ciudad, C. J., Fillat, C., & Guinovart, J. J. (1988). Determination of glucose-6-phosphatase activity using the glucose dehydrogenase-coupled reaction. Analytical Biochemistry, 173, 185–189.

    Article  CAS  PubMed  Google Scholar 

  • Ang, J. E., et al. (2012). Identification of human plasma metabolites exhibiting time-of-day variation using an untargeted liquid chromatography–mass spectrometry metabolomic approach. Chronobiology International, 29, 868–881.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barbe, F., et al. (2013). The heat treatment and the gelation are strong determinants of the kinetics of milk proteins digestion and of the peripheral availability of amino acids. Food Chemistry, 136, 1203–1212.

    Article  CAS  PubMed  Google Scholar 

  • Barber, M. N., et al. (2012). Plasma lysophosphatidylcholine levels are reduced in obesity and type 2 diabetes. PLoS ONE, 7, e41456.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barthel, A., & Schmoll, D. (2003). Novel concepts in insulin regulation of hepatic gluconeogenesis. American Journal of Physiology Endocrinology and Metabolism, 285, E685–E692.

    Article  CAS  PubMed  Google Scholar 

  • Bartoli, E., Fra, G. P., & Carnevale Schianca, G. P. (2011). The oral glucose tolerance test (OGTT) revisited. European Journal of Internal Medicine, 22, 8–12.

    Article  CAS  PubMed  Google Scholar 

  • Benton, H. P., Wong, D. M., Trauger, S. A., & Siuzdak, G. (2008). XCMS2: Processing tandem mass spectrometry data for metabolite identification and structural characterization. Analytical Chemistry, 80, 6382–6389.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boirie, Y., Dangin, M., Gachon, P., Vasson, M. P., Maubois, J. L., & Beaufrere, B. (1997). Slow and fast dietary proteins differently modulate postprandial protein accretion. Proceedings of the National Academy of Sciences of the United States of America, 94, 14930–14935.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Caraux, G., & Pinloche, S. (2005). PermutMatrix: A graphical environment to arrange gene expression profiles in optimal linear order. Bioinformatics, 21, 1280–1281.

    Article  CAS  PubMed  Google Scholar 

  • Carroll, M. F., & Schade, D. S. (2003). Timing of antioxidant vitamin ingestion alters postprandial proatherogenic serum markers. Circulation, 108, 24–31.

    Article  CAS  PubMed  Google Scholar 

  • Corpeleijn, E., Saris, W. H., & Blaak, E. E. (2009). Metabolic flexibility in the development of insulin resistance and type 2 diabetes: Effects of lifestyle. Obesity Reviews, 10, 178–193.

    Article  CAS  PubMed  Google Scholar 

  • Dardevet, D., Remond, D., Peyron, M. A., Papet, I., Savary-Auzeloux, I., & Mosoni, L. (2012). Muscle wasting and resistance of muscle anabolism: The “anabolic threshold concept” for adapted nutritional strategies during sarcopenia. Scientific World Journal, 2012, 269531.

    Article  PubMed Central  PubMed  Google Scholar 

  • Davidson, A. L., & Arion, W. J. (1987). Factors underlying significant underestimations of glucokinase activity in crude liver extracts: Physiological implications of higher cellular activity. Archives of Biochemistry and Biophysics, 253, 156–167.

    Article  CAS  PubMed  Google Scholar 

  • Denton, R. M., Edgell, N. J., Bridges, B. J., & Poole, G. P. (1979). Acute regulation of pyruvate kinase activity in rat epididymal adipose tissue by insulin. Biochemical Journal, 180, 523–531.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eckel-Mahan, K. L., Patel, V. R., Mohney, R. P., Vignola, K. S., Baldi, P., & Sassone-Corsi, P. (2012). Coordination of the transcriptome and metabolome by the circadian clock. Proceedings of the National Academy of Sciences of the United States of America, 109, 5541–5546.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Frayn, K., Arner, P., & Yki-Jarvinen, H. (2006). Fatty acid metabolism in adipose tissue, muscle and liver in health and disease. Essays in Biochemistry, 42, 89–103.

    Article  CAS  PubMed  Google Scholar 

  • Fustin, J. M., Doi, M., Yamada, H., Komatsu, R., Shimba, S., & Okamura, H. (2012). Rhythmic nucleotide synthesis in the liver: Temporal segregation of metabolites. Cell Reports, 1, 341–349.

    Article  CAS  PubMed  Google Scholar 

  • German, J. B., Zivkovic, A. M., Dallas, D. C., & Smilowitz, J. T. (2011). Nutrigenomics and personalized diets: What will they mean for food? Annual review of food science and technology, 2, 97–123.

    Article  PubMed Central  PubMed  Google Scholar 

  • Horakova, O., et al. (2012). Preservation of metabolic flexibility in skeletal muscle by a combined use of n-3 PUFA and rosiglitazone in dietary obese mice. PLoS ONE, 7, e43764.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Iynedjian, P. B. (2009). Molecular physiology of mammalian glucokinase. Cellular and Molecular Life Sciences, 66, 27–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Karlic, H., Lohninger, S., Koeck, T., & Lohninger, A. (2002). Dietary l-carnitine stimulates carnitine acyltransferases in the liver of aged rats. Journal of Histochemistry and Cytochemistry, 50, 205–212.

    Article  CAS  PubMed  Google Scholar 

  • Keppler, D., Decker, K., & Bergmeyer, H. U. (1974). Glycogen determination with amyloglucosidase Methods of Enzymatic Analysis (pp. 1127–1131). New York: Academic Press.

    Google Scholar 

  • Kersten, S. (2001). Mechanisms of nutritional and hormonal regulation of lipogenesis. EMBO Reports, 2, 282–286.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koopman, R., et al. (2009). Ingestion of a protein hydrolysate is accompanied by an accelerated in vivo digestion and absorption rate when compared with its intact protein. American Journal of Clinical Nutrition, 90, 106–115.

    Article  CAS  PubMed  Google Scholar 

  • Krug, S., Kastenmuller, G., Stuckler, F., Rist, M. J., Skurk, T., Sailer, M., et al. (2012). The dynamic range of the human metabolome revealed by challenges. FASEB Journal, 26(6), 2607–2619.

    Article  CAS  PubMed  Google Scholar 

  • Lambert, J. E., & Parks, E. J. (2012). Postprandial metabolism of meal triglyceride in humans. Biochimica et Biophysica Acta, 1821, 721–726.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maillot, F., et al. (2005). Changes in plasma triacylglycerol concentrations after sequential lunch and dinner in healthy subjects. Diabetes & Metabolism, 31, 69–77.

    Article  CAS  Google Scholar 

  • Mamo, J. C., James, A. P., Soares, M. J., Griffiths, D. G., Purcell, K., & Schwenke, J. L. (2005). A low-protein diet exacerbates postprandial chylomicron concentration in moderately dyslipidaemic subjects in comparison to a lean red meat protein-enriched diet. European Journal of Clinical Nutrition, 59, 1142–1148.

    Article  CAS  PubMed  Google Scholar 

  • Merrifield, C. A., Lewis, M., Claus, S. P., Beckonert, O. P., Dumas, M.-E., Duncker, S., et al. (2011). A metabolic system-wide characterisation of the pig: A model for human physiology. Molecular BioSystems, 7(9), 2577–2588.

    Article  CAS  PubMed  Google Scholar 

  • Miller, E. R., & Ullrey, D. E. (1987). The pig as a model for human nutrition. Annual Review of Nutrition, 7(1), 361–382.

    Article  CAS  PubMed  Google Scholar 

  • Minami, Y., et al. (2009). Measurement of internal body time by blood metabolomics. Proceedings of the National Academy of Sciences of the United States of America, 106, 9890–9895.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nappo, F., et al. (2002). Postprandial endothelial activation in healthy subjects and in type 2 diabetic patients: Role of fat and carbohydrate meals. Journal of the American College of Cardiology, 39, 1145–1150.

    Article  CAS  PubMed  Google Scholar 

  • Newgard, C. B. (2012). Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metabolism, 15, 606–614.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Newgard, C. B., et al. (2009). A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metabolism, 9, 311–326.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Noah, L., Krempf, M., Lecannu, G., Maugere, P., & Champ, M. (2000). Bioavailability of starch and postprandial changes in splanchnic glucose metabolism in pigs. American Journal of Physiology Endocrinology and Metabolism, 278, E181–E188.

    CAS  PubMed  Google Scholar 

  • Olsen, A. K., Bladbjerg, E. M., Marckmann, P., Larsen, L. F., & Hansen, A. K. (2002). The Göttingen minipig as a model for postprandial hyperlipidaemia in man: Experimental observations. Laboratory Animals, 36, 438–444.

    Article  CAS  PubMed  Google Scholar 

  • Panserat, S., Rideau, N., & Polakof, S. (2014). Nutritional regulation of glucokinase: A cross-species story. Nutrition Research Reviews, 27(1), 21–47.

    Article  CAS  PubMed  Google Scholar 

  • Pellis, L., et al. (2012). Plasma metabolomics and proteomics profiling after a postprandial challenge reveal subtle diet effects on human metabolic status. Metabolomics, 8, 347–359.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pereira, H., Martin, J.-F., Joly, C., Sébédio, J.-L., & Pujos-Guillot, E. (2010). Development and validation of a UPLC/MS method for a nutritional metabolomic study of human plasma. Metabolomics, 6, 207–218.

    Article  CAS  Google Scholar 

  • Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29, e45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Remond, D., et al. (2007). Postprandial whole-body protein metabolism after a meat meal is influenced by chewing efficiency in elderly subjects. American Journal of Clinical Nutrition, 85, 1286–1292.

    CAS  PubMed  Google Scholar 

  • Rerat, A., Jung, J., & Kande, J. (1988a). Absorption kinetics of dietary hydrolysis products in conscious pigs given diets with different amounts of fish protein. 2. Individual amino acids. British Journal of Nutrition, 60, 105–120.

    Article  CAS  PubMed  Google Scholar 

  • Rerat, A., Vaissade, P., & Vaugelade, P. (1988b). Absorption kinetics of dietary hydrolysis products in conscious pigs given diets with different amounts of fish protein. 1. Amino-nitrogen and glucose. British Journal of Nutrition, 60, 91–104.

    Article  CAS  PubMed  Google Scholar 

  • Rubenstein, A. H., Seftel, H. C., Miller, K., Bersohn, I., & Wright, A. D. (1969). Metabolic response to oral glucose in healthy South African white, Indian, and African subjects. British journal of medicine, 1, 748–751.

    Article  CAS  Google Scholar 

  • Saggerson, E., & Greenbaum, A. (1970). The regulation of triglyceride synthesis and fatty acid synthesis in rat epididymal adipose tissue. Effects of altered dietary and hormonal conditions. Biochemical Journal, 119, 221.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sampey, B. P., et al. (2012). Metabolomic profiling reveals mitochondrial-derived lipid biomarkers that drive obesity-associated inflammation. PLoS ONE, 7, e38812.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Secor, S. M. (2009). Specific dynamic action: A review of the postprandial metabolic response. Journal of Comparative Physiology B, 179, 1–56.

    Article  Google Scholar 

  • Sestoft, L., Tonnesen, K., Hansen, F. V., & Damgaard, S. E. (1972). Fructose and d-glyceraldehyde metabolism in the isolated perfused pig liver. European Journal of Biochemistry, 30(3), 542–552.

    Article  CAS  PubMed  Google Scholar 

  • Shaham, O., et al. (2008). Metabolic profiling of the human response to a glucose challenge reveals distinct axes of insulin sensitivity. Molecular Systems Biololy, 4, 214.

    Google Scholar 

  • Skurk, T., Rubio-Aliaga, I., Stamfort, A., Hauner, H., & Daniel, H. (2011). New metabolic interdependencies revealed by plasma metabolite profiling after two dietary challenges. Metabolomics, 7, 388–399.

    Article  CAS  Google Scholar 

  • Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R., & Siuzdak, G. (2006). XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry, 78, 779–787.

    Article  CAS  PubMed  Google Scholar 

  • Smyth, G. E., & Colman, R. F. (1992). Inactivation of pig heart NADP-specific isocitrate dehydrogenase by two affinity reagents is due to reaction with a cysteine not essential for function. Archives of Biochemistry and Biophysics, 293(2), 356–361.

    Article  CAS  PubMed  Google Scholar 

  • Son, N., et al. (2012). Liquid chromatography-mass spectrometry-based metabolomic analysis of livers from aged rats. Journal of Proteome Research, 11, 2551–2558.

    Article  CAS  PubMed  Google Scholar 

  • Spégel, P., Danielsson, A. H., Bacos, K., Nagorny, C. F., Moritz, T., Mulder, H., et al. (2010). Metabolomic analysis of a human oral glucose tolerance test reveals fatty acids as reliable indicators of regulated metabolism. Metabolomics, 6(1), 56–66.

    Article  Google Scholar 

  • Sumner, L. W., et al. (2007). Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics, 3, 211–221.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Truswell, A. S. (1994). Food carbohydrates and plasma lipids—an update. American Journal of Clinical Nutrition, 59, 710S–718S.

    CAS  PubMed  Google Scholar 

  • Wahl, S., Krug, S., Then, C., Kirchhofer, A., Kastenmüller, G., Brand, T., et al. (2014). Comparative analysis of plasma metabolomics response to metabolic challenge tests in healthy subjects and influence of the FTO obesity risk allele. Metabolomics, 10(3), 386–401.

    Article  CAS  Google Scholar 

  • Wang, T. J., et al. (2011). Metabolite profiles and the risk of developing diabetes. Nature Medicine, 17, 448–453.

    Article  PubMed Central  PubMed  Google Scholar 

  • Westbury, K., & Hahn, P. (1984). Fructose-1,6-biphosphatase activity in the intestinal mucosa of developing rats. American Journal of Physiology, 246, G683–G686.

    CAS  PubMed  Google Scholar 

  • Wishart, D. S. (2007). Current progress in computational metabolomics. Brief Bioinformatics, 8, 279–293.

    Article  CAS  PubMed  Google Scholar 

  • Xie, B., Waters, M. J., & Schirra, H. J. (2012). Investigating potential mechanisms of obesity by metabolomics. Journal of Biomedicine and Biotechnology, 2012, 805683.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhao, X., et al. (2009). Changes of the plasma metabolome during an oral glucose tolerance test: Is there more than glucose to look at? American Journal of Physiology, Endocrinology and Metabolism, 296, E384–E393.

    Article  CAS  Google Scholar 

  • Zhu, C., Liang, Q. L., Hu, P., Wang, Y. M., & Luo, G. A. (2011). Phospholipidomic identification of potential plasma biomarkers associated with type 2 diabetes mellitus and diabetic nephropathy. Talanta, 85, 1711–1720.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge D. Durand, C. Prolhac, C. Buisson, J. David, M. Petera and the personnel of the Animal Facility (C. de L’Homme, B. Cohade) for technical assistance.

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with Ethical Requirements

All procedures were in accordance with the guidelines formulated by the European Community for the use of experimental animals (L358-86/609/EEC, Council Directive, 1986).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Polakof.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polakof, S., Rémond, D., Rambeau, M. et al. Postprandial metabolic events in mini-pigs: new insights from a combined approach using plasma metabolomics, tissue gene expression, and enzyme activity. Metabolomics 11, 964–979 (2015). https://doi.org/10.1007/s11306-014-0753-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-014-0753-8

Keywords

Navigation