Skip to main content

Advertisement

Log in

Metabolomic profiling of three brain regions from a postnatal infected Borna disease virus Hu-H1 rat model

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Neonatal rat infection with Borna disease virus (BDV), termed neonatal Borna disease, is an established model for investigating the BDV-associated pathogenesis of neurodevelopmental abnormalities. BDV produces a persistent noncytolytic infection in all culture cell systems assayed to date, while persistent infection in neonatal rats results in a progressive loss of hippocampal granule cells, cerebellar Purkinje cells, and cortical GABA-ergic neurons. Persistent infection also results in behavioral deficits including hyperactivity, cognitive impairment, and abnormal social behavior. However, the molecular mechanisms underlying the neuronal degeneration and behavioral abnormalities remain unclear. Using a metabolomic approach based on gas chromatography coupled with mass spectrometry in conjunction with statistical pattern recognition, the metabolic changes in response to BDV Hu-H1 infection were characterized in the rat hippocampus, cerebellum, and cortex. Metabonomic profiling revealed significant perturbations in nucleotide (e.g., adenosine, uracil, inosine, adenosine-5′-monophosphate, uridine-5′-monophosphate, d-ribose 5-phosphate, and sedoheptulose 7-phosphate), amino acid (e.g., lysine, glycine, phenylalanine, tyrosine, proline, serine, cysteine, aspartic acid, pyroglutamic acid, and γ-aminobutyric acid), lipid (e.g., cholesterol, myristic acid, stearic acid, palmitic acid, 1-monopalmitoylglycerol, and arachidonic acid), and energy (e.g., glucose, lactose, 3-phosphoglyceric acid, and pyruvic acid) metabolites. These metabolites participate in pathways crucial to viral proliferation and neurotransmitter homeostasis. This metabolomic profiling study provides insight into the pathogenic mechanisms of BDV and new directions with which to investigate the in vivo effects of persistent BDV infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abraham, G. N., & Podell, D. N. (1981). Pyroglutamic acid. Non-metabolic formation, function in proteins and peptides, and characteristics of the enzymes effecting its removal. Molecular and Cellular Biochemistry, 38(Spec No(Pt 1)), 181–190.

    Article  CAS  PubMed  Google Scholar 

  • Andersson, T., Schultzberg, M., Schwarcz, R., Love, A., Wickman, C., & Kristensson, K. (1991). NMDA-receptor antagonist prevents measles virus-induced neurodegeneration. European Journal of Neuroscience, 3(1), 66–71.

    Article  PubMed  Google Scholar 

  • Andersson, T., Schwarcz, R., Love, A., & Kristensson, K. (1993). Measles virus-induced hippocampal neurodegeneration in the mouse: a novel, subacute model for testing neuroprotective agents. Neuroscience Letters, 154(1–2), 109–112.

    Article  CAS  PubMed  Google Scholar 

  • Bardell, D., & Essex, M. (1974). Glycolysis during early infection of feline and human cells with feline leukemia virus. Infection and Immunity, 9(5), 824–827.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benedikz, E., Casaccia-Bonnefil, P., Stelzer, A., & Bergold, P. J. (1993). Hyperexcitability and cell loss in kainate-treated hippocampal slice cultures. NeuroReport, 5(1), 90–92.

    Article  CAS  PubMed  Google Scholar 

  • Bode, L., Durrwald, R., Rantam, F. A., Ferszt, R., & Ludwig, H. (1996). First isolates of infectious human Borna disease virus from patients with mood disorders. Molecular Psychiatry, 1(3), 200–212.

    CAS  PubMed  Google Scholar 

  • Bowman, C. L., & Kimelberg, H. K. (1984). Excitatory amino acids directly depolarize rat brain astrocytes in primary culture. Nature, 311(5987), 656–659.

    Article  CAS  PubMed  Google Scholar 

  • Clemente, R., De Parseval, A., Perez, M., & Juan, C. (2009). Borna disease virus requires cholesterol in both cellular membrane and viral envelope for efficient cell entry. Journal of Virology, 83(6), 2655–2662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cloarec, O., Dumas, M. E., Trygg, J., Craig, A., Barton, R. H., Lindon, J. C., et al. (2005). Evaluation of the orthogonal projection on latent structure model limitations caused by chemical shift variability and improved visualization of biomarker changes in 1H NMR spectroscopic metabonomic studies. Analytical Chemistry, 77(2), 517–526. doi:10.1021/ac048803i.

    Article  CAS  PubMed  Google Scholar 

  • Delang, L., Paeshuyse, J., Vliegen, I., Leyssen, P., Obeid, S., Durantel, D., et al. (2009). Statins potentiate the in vitro anti-hepatitis C virus activity of selective hepatitis C virus inhibitors and delay or prevent resistance development. Hepatology, 50(1), 6–16.

    Article  CAS  PubMed  Google Scholar 

  • Diamond, D. L., Syder, A. J., Jacobs, J. M., Sorensen, C. M., Walters, K.-A., Proll, S. C., et al. (2010). Temporal proteome and lipidome profiles reveal hepatitis C virus-associated reprogramming of hepatocellular metabolism and bioenergetics. PLoS Pathogens, 6(1), e1000719.

    Article  PubMed  PubMed Central  Google Scholar 

  • Genzel, Y., Schulze-Horsel, J., Möhler, L., Sidorenko, Y., & Reichl, U. (2007). Influenza vaccines–challenges in mammalian cell culture technology. Cell Technology for Cell Products, 3, 503–508.

    Article  Google Scholar 

  • Gonzalez-Dunia, D., Watanabe, M., Syan, S., Mallory, M., Masliah, E., & De La Torre, J. C. (2000). Synaptic pathology in Borna disease virus persistent infection. [eng]. Journal of Virology, 74(8), 3441–3448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gosztonyi, G., & Ludwig, H. (1995). Borna disease–neuropathology and pathogenesis. Current Topics in Microbiology and Immunology, 190, 39–73.

    CAS  PubMed  Google Scholar 

  • Hornig, M., Weissenbock, H., Horscroft, N., & Lipkin, W. I. (1999). An infection-based model of neurodevelopmental damage. Proceedings of the National Academy of Sciences of the United States of America, 96(21), 12102–12107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, R., Gao, H., Zhang, L., Jia, J., Liu, X., Zheng, P., et al. (2012). Borna disease virus infection perturbs energy metabolites and amino acids in cultured human oligodendroglia cells. PLoS ONE, 7(9), e44665. doi:10.1371/journal.pone.0044665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kistler, A. L., Gancz, A., Clubb, S., Skewes-Cox, P., Fischer, K., Sorber, K., et al. (2008). Recovery of divergent avian bornaviruses from cases of proventricular dilatation disease: identification of a candidate etiologic agent. Virology Journal, 5, 88. doi:10.1186/1743-422X-5-88.

    Article  PubMed  PubMed Central  Google Scholar 

  • Klemperer, H. (1961). Glucose breakdown in chick embryo cells infected with influenza virus. Virology, 13(1), 68–77.

    Article  CAS  PubMed  Google Scholar 

  • Koster-Patzlaff, C., Hosseini, S. M., & Reuss, B. (2008). Layer specific changes of astroglial gap junctions in the rat cerebellar cortex by persistent Borna Disease Virus infection. [eng]. Brain Research, 1219, 143–158.

    Article  PubMed  Google Scholar 

  • Lancaster, K., Dietz, D. M., Moran, T. H., & Pletnikov, M. V. (2007). Abnormal social behaviors in young and adult rats neonatally infected with Borna disease virus. [eng]. Behavioural Brain Research, 176(1), 141–148.

    Article  CAS  PubMed  Google Scholar 

  • Li, Q., Wang, Z., Zhu, D., Xu, M., Chen, X., Peng, D., et al. (2009). Detection and analysis of Borna disease virus in Chinese patients with neurological disorders. European Journal of Neurology, 16(3), 399–403. doi:10.1111/j.1468-1331.2008.02516.x.

    Article  PubMed  Google Scholar 

  • Lin, S., Liu, N., Yang, Z., Song, W., Wang, P., Chen, H., et al. (2010). GC/MS-based metabolomics reveals fatty acid biosynthesis and cholesterol metabolism in cell lines infected with influenza A virus. Talanta, 83(1), 262–268.

    Article  CAS  PubMed  Google Scholar 

  • Ludwig, H., Bode, L., & Gosztonyi, G. (1988). Borna disease: a persistent virus infection of the central nervous system. Progress in Medical Virology, 35, 107–151.

    CAS  Google Scholar 

  • Ludwig, H., Furuya, K., Bode, L., Klein, N., Durrwald, R., & Lee, D. S. (1993). Biology and neurobiology of Borna disease viruses (BDV), defined by antibodies, neutralizability and their pathogenic potential. Archives of Virology. Supplementum, 7, 111–133.

    Article  CAS  PubMed  Google Scholar 

  • Luedemann, A., Strassburg, K., Erban, A., & Kopka, J. (2008). TagFinder for the quantitative analysis of gas chromatography–mass spectrometry (GC-MS)-based metabolite profiling experiments. Bioinformatics, 24(5), 732–737. doi:10.1093/bioinformatics/btn023.

    Article  CAS  PubMed  Google Scholar 

  • Munger, J., Bajad, S. U., Coller, H. A., Shenk, T., & Rabinowitz, J. D. (2006). Dynamics of the cellular metabolome during human cytomegalovirus infection. PLoS Pathogens, 2(12), e132. doi:10.1371/journal.ppat.0020132.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nargi-Aizenman, J. L., Havert, M. B., Zhang, M., Irani, D. N., Rothstein, J. D., & Griffin, D. E. (2004). Glutamate receptor antagonists protect from virus-induced neural degeneration. Annals of Neurology, 55(4), 541–549. doi:10.1002/ana.20033.

    Article  CAS  PubMed  Google Scholar 

  • Negro, F. (2010). Abnormalities of lipid metabolism in hepatitis C virus infection. Gut, 59(9), 1279–1287. doi:10.1136/gut.2009.192732.

    Article  CAS  PubMed  Google Scholar 

  • Ovanesov, M. V., Vogel, M. W., Moran, T. H., & Pletnikov, M. V. (2007). Neonatal Borna disease virus infection in rats is associated with increased extracellular levels of glutamate and neurodegeneration in the striatum. Journal of Neurovirology, 13(3), 185–194.

    Article  CAS  PubMed  Google Scholar 

  • Petty, F. (1995). GABA and mood disorders: a brief review and hypothesis. Journal of Affective Disorders, 34(4), 275–281.

    Article  CAS  PubMed  Google Scholar 

  • Pletnikov, M. V., Moran, T. H., & Carbone, K. M. (2002). Borna disease virus infection of the neonatal rat: developmental brain injury model of autism spectrum disorders. Frontiers in Bioscience, 7, d593–d607.

    CAS  PubMed  Google Scholar 

  • Pletnikov, M. V., Rubin, S. A., Carbone, K. M., Moran, T. H., & Schwartz, G. J. (2001). Neonatal Borna disease virus infection (BDV)-induced damage to the cerebellum is associated with sensorimotor deficits in developing Lewis rats. Brain Research. Developmental Brain Research, 126(1), 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Pletnikov, M. V., Rubin, S. A., Schwartz, G. J., Carbone, K. M., & Moran, T. H. (2000). Effects of neonatal rat Borna disease virus (BDV) infection on the postnatal development of the brain monoaminergic systems. Brain Research. Developmental Brain Research, 119(2), 179–185.

    Article  CAS  PubMed  Google Scholar 

  • Pletnikov, M. V., Rubin, S. A., Schwartz, G. J., Moran, T. H., Sobotka, T. J., & Carbone, K. M. (1999). Persistent neonatal Borna disease virus (BDV) infection of the brain causes chronic emotional abnormalities in adult rats. Physiology & Behavior, 66(5), 823–831.

    Article  CAS  Google Scholar 

  • Richt, J. A., Alexander, R. C., Herzog, S., Hooper, D. C., Kean, R., Spitsin, S., et al. (1997). Failure to detect Borna disease virus infection in peripheral blood leukocytes from humans with psychiatric disorders. Journal of NeuroVirology, 3(2), 174–178.

    Article  CAS  PubMed  Google Scholar 

  • Ritter, J. B., Wahl, A. S., Freund, S., Genzel, Y., & Reichl, U. (2010). Metabolic effects of influenza virus infection in cultured animal cells: intra- and extracellular metabolite profiling. BMC Systems Biology, 4, 61. doi:10.1186/1752-0509-4-61.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Moreno, A., Lopez-Garcia, J. C., & Lerma, J. (2000). Two populations of kainate receptors with separate signaling mechanisms in hippocampal interneurons. Proceedings of the National Academy of Sciences of the United States of America, 97(3), 1293–1298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roe, B., Kensicki, E., Mohney, R., & Hall, W. W. (2011). Metabolomic profile of hepatitis C virus-infected hepatocytes. PLoS ONE, 6, e23641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubin, S. A., Sylves, P., Vogel, M., Pletnikov, M., Moran, T. H., Schwartz, G. J., et al. (1999). Borna disease virus-induced hippocampal dentate gyrus damage is associated with spatial learning and memory deficits. Brain Research Bulletin, 48(1), 23–30.

    Article  CAS  PubMed  Google Scholar 

  • Salvatore, M., Morzunov, S., Schwemmle, M., & Lipkin, W. I. (1997). Borna disease virus in brains of North American and European people with schizophrenia and bipolar disorder. Bornavirus Study Group. Lancet, 349(9068), 1813–1814.

    Article  CAS  PubMed  Google Scholar 

  • Scalbert, A., Brennan, L., Fiehn, O., Hankemeier, T., Kristal, B. S., Van Ommen, B., et al. (2009). Mass-spectrometry-based metabolomics: limitations and recommendations for future progress with particular focus on nutrition research. Metabolomics, 5(4), 435–458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schägger, H. (2006). Tricine–SDS-PAGE. Nature Protocols, 1(1), 16–22.

    Article  PubMed  Google Scholar 

  • Sidorenko, Y., & Reichl, U. (2004). Structured model of influenza virus replication in MDCK cells. Biotechnology and Bioengineering, 88(1), 1–14. doi:10.1002/bit.20096.

    Article  CAS  PubMed  Google Scholar 

  • Singh, V. N., Singh, M., August, J. T., & Horecker, B. L. (1974). Alterations in glucose metabolism in chick-embryo cells transformed by Rous sarcoma virus: intracellular levels of glycolytic intermediates. Proceedings of the National Academy of Sciences of the United States of America, 71(10), 4129–4132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smriga, M., Ghosh, S., Mouneimne, Y., Pellett, P. L., & Scrimshaw, N. S. (2004). Lysine fortification reduces anxiety and lessens stress in family members in economically weak communities in Northwest Syria. Proceedings of the National Academy of Sciences of the United of America, 101(22), 8285–8288. doi:10.1073/pnas.0402550101.

    Article  CAS  Google Scholar 

  • Smriga, M., Kameishi, M., Uneyama, H., & Torii, K. (2002). Dietary l-lysine deficiency increases stress-induced anxiety and fecal excretion in rats. The Journal of nutrition, 132(12), 3744–3746.

    CAS  PubMed  Google Scholar 

  • Smriga, M., & Torii, K. (2003). l-Lysine acts like a partial serotonin receptor 4 antagonist and inhibits serotonin-mediated intestinal pathologies and anxiety in rats. Proceedings of the National Academy of Sciences of the United States of America, 100(26), 15370–15375. doi:10.1073/pnas.2436556100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solbrig, M. V., Koob, G. F., Joyce, J. N., & Lipkin, W. I. (1996). A neural substrate of hyperactivity in borna disease: changes in brain dopamine receptors. Virology, 222(2), 332–338. doi:10.1006/viro.1996.0430.

    Article  CAS  PubMed  Google Scholar 

  • Temin, H. M. (1968). Studies on carcinogenesis by avian sarcoma viruses: VIII. Glycolysis and cell multiplication. International Journal of Cancer, 3(2), 273–282.

    Article  CAS  PubMed  Google Scholar 

  • Trygg, J., & Wold, S. (2002). Orthogonal projections to latent structures (O-PLS). Journal of Chemometrics, 16(3), 119–128.

    Article  CAS  Google Scholar 

  • Wolff, T., Heins, G., Pauli, G., Burger, R., & Kurth, R. (2006). Failure to detect Borna disease virus antigen and RNA in human blood. Journal of Clinical Virology, 36(4), 309–311. doi:10.1016/j.jcv.2006.05.005.

    Article  CAS  PubMed  Google Scholar 

  • Zocher, M., Czub, S., Schulte-Monting, J., de La Torre, J. C., & Sauder, C. (2000). Alterations in neurotrophin and neurotrophin receptor gene expression patterns in the rat central nervous system following perinatal Borna disease virus infection. [eng]. Journal For Neurovirology, 6(6), 462–477.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor Hanns Ludwig, AG Bornavirus infections at the Free University of Berlin, Germany, for providing the BDV Hu-H1 strain and antibody in addition to his helpful commentary. We are grateful to Dr. Liv Bode, Robert Koch Institute, Berlin, Germany, for thoroughly reviewing the background virology and proofreading the manuscript. We also thank Dr. N. D. Melgiri for his assistance in editing and proofreading the manuscript. This work was financially supported by the National Basic Research Program of China (973 Program) (Grant No. 2009CB918300), the China Postdoctoral Science Foundation (Grant No. 2012M511911), and the Chongqing Postdoctoral Research Project (Grant No. xm201101003).

Conflict of interest

The authors have declared no conflict of interest in the submission of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Xie.

Additional information

Yang Lei and Dan Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lei, Y., Li, D., Deng, J. et al. Metabolomic profiling of three brain regions from a postnatal infected Borna disease virus Hu-H1 rat model. Metabolomics 10, 484–495 (2014). https://doi.org/10.1007/s11306-013-0593-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-013-0593-y

Keywords

Navigation