Skip to main content
Log in

Urine metabolomics reveals novel physiologic functions of human aldehyde oxidase and provides biomarkers for typing xanthinuria

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Classical xanthinuria is a rare inherited metabolic disorder caused by either isolated xanthine dehydrogenase (XDH) deficiency (type I) or combined XDH and aldehyde oxidase (AO) deficiency (type II). XDH and AO are evolutionary related enzymes that share a sulfurated molybdopterin cofactor. While the role of XDH in purine metabolism is well established, the physiologic functions of AO are mostly unknown. XDH and AO are important drug metabolizing enzymes. Urine metabolomic analysis by high pressure liquid chromatography and mass spectrometry of xanthinuric patients was performed to unveil physiologic functions of XDH and AO and provide biomarkers for typing xanthinuria. Novel endogenous products of AO, hydantoin propionic acid, N1-methyl-8-oxoguanine and N-(3-acetamidopropyl) pyrrolidin-2-one formed in the histidine, nucleic acid and spermidine metabolic pathways, respectively, were identified as being lowered in type II xanthinuria. Also lowered were the known AO products, N1-methyl-2-pyridone-5-carboxamide and N1-methyl-4-pyridone-5-carboxamide in the nicotinamide degradation pathway. In contrast to the KEGG annotations, the results suggest minor role of human AO in the conversion of pyridoxal to pyridoxate and gentisaldehyde to gentisate in the vitamin B6 and tyrosine metabolic pathways, respectively. The perturbations in purine degradation due to XDH deficiency radiated further from the previously known metabolites, uric acid, xanthine and hypoxanthine to guanine, methyl guanine, xanthosine and inosine. Possible pathophysiological implications of the observed metabolic perturbations are discussed. The identified biomarkers have the potential to replace the allopurinol-loading test used in the past to type xanthinuria, thus facilitating appropriate pharmacogenetic counseling and gene directed search for causative mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

XDH:

Xanthine dehydrogenase

XO:

Xanthine oxidase

HMCS:

Human molybdenum cofactor sulfurase

MS2 :

Tandem mass spectra

KEGG:

Kyoto encyclopedia of genes and genomes

2PY:

N1-methyl-2-pyridone-5-carboxamide

4PY:

N1-methyl-4-pyridone-5-carboxamide

NMN:

N1-methylnicotinamide

HPA:

Hydantoin propionic acid

NMOG:

N-methyl-8-oxoguanine

APP:

N-(3-acetamidopropyl) pyrrolidin-2-one

ADH:

Aldehyde dehydrogenase

TPMT:

Thiopurine methyl transferase

6-MP:

6-Mercaptopurine

References

  • Abelson, D., Boyle, A., & Seligson, H. (1963). Identification of N′-methyl-4-pyridone-3-carboxamide in human plasma. Journal of Biological Chemistry, 238, 717–718.

    PubMed  CAS  Google Scholar 

  • Ayvazian, J. H., & Skupp, S. (1965). The study of purine utilization and excretion in a xanthinuric man. Journal of Clinical Investigation, 44, 1248–1260.

    Article  PubMed  CAS  Google Scholar 

  • Cheung, K. J., Tzameli, E., Pissios, P., et al. (2007). Xanthine oxidoreductase is a regulator of adipogenesis and PPARγ activity. Cell Metabolism, 5, 115–128.

    Article  PubMed  CAS  Google Scholar 

  • Chlopicki, S., Swies, J., Mogielnicki, A., et al. (2007). 1-Methylnicotinamide (MNA), a primary metabolite of nicotinamide, excerts anti-thrombotic activity mediated by cyclooxygenase-2/prostacyclin pathway. British Journal of Pharmacology, 152, 230–239.

    Article  PubMed  CAS  Google Scholar 

  • Delaney, J., Hodson, M. P., Thakkar, H., et al. (2005). Tryptophan-NAD+ pathway metabolites as putative biomarkers and predictors of peroxisome proliferation. Archives of Toxicology, 79, 208–223.

    Article  PubMed  CAS  Google Scholar 

  • Gordon, A. H., Green, D. E., & Subrahmanyan, V. (1940). Liver aldehyde oxidase. Biochemical Journal, 34, 764–774.

    PubMed  CAS  Google Scholar 

  • Hassall, H., & Greenberg, D. M. (1963). The oxidation of 4(5)-imidazolone-5(4)-propionic acid to hydantoin-5-propionic acid by xanthine oxidase. Biochimica et Biophysica Acta, 67, 507–510.

    Article  PubMed  CAS  Google Scholar 

  • Helbock, H. J., Thompson, J., Yeo, H., & Ames, B. N. (1996). N2-methyl-8-oxoguanine: A tRNA urinary metabolite-role of xanthine oxidase. Free Radical Biology and Medicine, 20, 475–481.

    Article  PubMed  CAS  Google Scholar 

  • Hille, R., Nishino, T., & Bittner, F. (2011). Molybdenum enzymes in higher organisms. Coordination Chemistry Reviews, 255, 1179–1205.

    Article  PubMed  CAS  Google Scholar 

  • Hou, Y. M., & Perona, J. P. (2010). Stereochemical mechanisms of t-RNA methyltransferases. FEBS Letters, 584, 278–286.

    Article  PubMed  CAS  Google Scholar 

  • Ichida, K., Yoshida, M., Sakuma, R., & Hosoya, T. (1998). Two siblings with classical xanthinuria type I: significance of allopurinol loading test. Internal Medicine, 37, 77–82.

    Article  PubMed  CAS  Google Scholar 

  • Kamleh, M. A., Hobani, Y., Dow, J. A. T., Zheng, L., & Watson, D. G. (2009). Towards a platform for the metabonomic profiling of different strains of Drosophila melanogaster using liquid chromatography-Fourier transform mass spectrometry. FEBS Journal, 276, 6798–6809.

    Article  PubMed  CAS  Google Scholar 

  • Kitamura, S., Sugihara, K., & Ohta, S. (2006). Drug-metabolizing ability of molybdenum hydroxylases. Drug Metabolism and Pharmacokinetics, 21, 83–98.

    Article  PubMed  CAS  Google Scholar 

  • Laurence, A., Edbury, S. M., Marinaki, A. M., et al. (2007). 4-pyridone-3-carboxamide ribonucleoside triphosphate accumulating in erythrocytes in end stage renal failure originates from tryptophan metabolism. Clinical and Experimental Medicine, 7, 135–141.

    Article  PubMed  CAS  Google Scholar 

  • Levartovsky, D., Lagziel, A., Sperling, O., et al. (2000). XDH gene mutation is the underlying cause of classical xanthinuria: A second report. Kidney International, 57, 2215–2220.

    Article  PubMed  CAS  Google Scholar 

  • Marchitti, S. A., Brocker, C., Stagos, D., & Vasiliou, V. (2008). Non-P450 aldehyde oxidizing enzymes: The aldehyde dehydrogenase superfamily. Expert Opinion on Drug Metabolism and Toxicology, 4, 697–720.

    Article  PubMed  CAS  Google Scholar 

  • Merrill, A. H., Jr., Henderson, J. M., Wang, E., McDonald, B. W., & Millikan, W. J. (1984). Metabolism of vitamin B-6 by human liver. Journal of Nutrition, 114, 1664–1674.

    PubMed  CAS  Google Scholar 

  • Ohtsubo, T., Matsumura, K., Sakagami, K., et al. (2009). Xanthine oxidoreductase depletion induces renal interstitial fibrosis through aberrant lipid and purine accumulation in renal tubules. Hypertension, 54, 868–876.

    Article  PubMed  CAS  Google Scholar 

  • Ohtsubo, T., Rovira, I. I., Starost, M. F., Liu, C., & Finkel, T. (2004). Xanthine oxidoreductase is an endogenous regulator of cyclooxygenase-2. Circulation Research, 95, 1118–1124.

    Article  PubMed  CAS  Google Scholar 

  • Payes, B., & Greenberg, D. M. (1968). Studies on the enzymatic decomposition of urocanic acid. VII. Identification of the enzyme catalyzing the oxidation of 4(5)-imidazolone-5(4)-propionic acid as an aldehyde oxidase. Archives of Biochemistry and Biophysics, 125, 911–917.

    Article  PubMed  CAS  Google Scholar 

  • Pegg, A. E., & Casero, R. A., Jr. (2011). Current status of the polyamine research field. In A. E. Pegg & R. A. Casero Jr. (Eds.), Polyamines: methods and protocols, Methods Mol Biol (vol 720) (pp. 3–35). Berlin: Springer Science + Business Media, LLC.

    Google Scholar 

  • Peretz, H., Shtauber-Naamati, M., Levartovsky, D., et al. (2007). Identification and characterization of the first mutation (Arg776Cys) in the C-terminal domain of the Human Molybdenum Cofactor Sulfurase (HMCS) associated with type II classical xanthinuria. Molecular Genetics and Metabolism, 91, 23–29.

    Article  PubMed  CAS  Google Scholar 

  • Pryde, D. C., Davie, D., Hu, Q., Jones, P., Obach, R. S., & Tran, T.-D. (2010). Aldehyde oxidase: An enzyme of emerging importance in drug discovery. Journal of Medicinal Chemistry, 53, 8441–8460.

    Article  PubMed  CAS  Google Scholar 

  • Raison, J. K., Henson, G., & Rienits, K. G. (1966). The oxidation of gentisaldehyde by nicotinamide-adenine dinucleotide-specific, aromatic aldehyde dehydrogenase from rabbit liver. Biochimica et Biophysica Acta, 118, 285–298.

    Article  PubMed  CAS  Google Scholar 

  • Rutkowski, B., Slominska, E., Szolkiewicz, M., et al. (2003). N-methyl-2-pyridone-5-carboxamide: a novel urine toxin? Kidney International, 63, S19–S21.

    Article  Google Scholar 

  • Salek, R. M., Maguire, M. L., Bentley, E., et al. (2007). A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat and human. Physiological Genomics, 29, 99–108.

    Article  PubMed  CAS  Google Scholar 

  • Seiler, N. (2004). Catabolism of polyamines. Amino Acids, 26, 217–233.

    PubMed  CAS  Google Scholar 

  • Seiler, N., Knodgen, B., & Haegele, K. (1982). N-(3-aminopropyl)pyrrolidin-2-one, a product of spermidine catabolism in vivo. Biochemical Journal, 208, 189–197.

    PubMed  CAS  Google Scholar 

  • Sigruener, A., Buechler, C., Orso, E., et al. (2007). Human aldehyde oxidase 1 interacts with ATP-binding cassette transporter-1 and modulates its activity in hepatocytes. Hormone and Metabolic Research, 39, 781–789.

    Article  PubMed  CAS  Google Scholar 

  • Simmonds, H. A., Reitter, S., & Nishino, T. (1995). Hereditary xanthinuria. In C. R. Scriver, A. L. Beaudet, W. S. Sly, et al. (Eds.), The metabolic and molecular bases of inherited diseases (vol 2) (pp. 1781–1797). New York: McGraw-Hill, Inc.

    Google Scholar 

  • Smith, M. A., Marinaki, A. M., Arenas, M., et al. (2009). Novel pharmacogenetic markers for treatment outcome in azathioprine-treated inflammatory bowel disease. Alimentary Pharmacology & Therapeutics, 30, 375–384.

    Article  CAS  Google Scholar 

  • Vorbach, C., Harrison, R., & Capecchi, M. R. (2003). Xanthine oxidoreductase is central to the evolution and function of the innate immune system. Trends in Immunology, 24, 512–517.

    Article  PubMed  CAS  Google Scholar 

  • Vorbach, C., Scriven, A., & Capecchi, M. R. (2002). The housekeeping gene xanthine oxidoreductase is necessary for milk fat droplet enveloping and secretion: gene sharing in the lactating mammary gland. Genes & Development, 16, 3223–3235.

    Article  CAS  Google Scholar 

  • Weigert, J., Neumeier, M., Bauer, S., et al. (2008). Small-interference RNA-mediated knock-down of aldehyde oxidase 1 in 3T3–L1 cells impairs adipogenesis and adiponectin release. FEBS Letters, 582, 2965–2972.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, S.-S., Li, D., Sun, W.-P., et al. (2009). Nicotinamide overload may play a role in the development of type 2 diabetes. World Journal of Gastroenterology, 15, 5674–5684.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Scottish Life Sciences Alliance for funding scholarship of GB and acquisition of the Exactive mass spectrometer. Thanks are due to the referring physicians Drs. Renate Yakobov, Halil Heib and Dganit Dinour.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hava Peretz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peretz, H., Watson, D.G., Blackburn, G. et al. Urine metabolomics reveals novel physiologic functions of human aldehyde oxidase and provides biomarkers for typing xanthinuria. Metabolomics 8, 951–959 (2012). https://doi.org/10.1007/s11306-011-0391-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-011-0391-3

Keywords

Navigation