Skip to main content
Log in

Tissue disruption and extraction methods for metabolic profiling of an invertebrate sentinel species

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Metabolic profiling of tissues needs special attention, because the compartmentalization of cellular constituents will be abolished by sample homogenization. This loss of partitioning leads to protein and metabolite instability in extracts, and therefore metabolite extraction protocols need to ensure very rapid inactivation of macromolecules as well as solubilization of metabolites. There are many published methods for tissue metabolome analysis, but no universally accepted standard, and a lack of measurable quality benchmarks. We developed a protocol for efficient tissue disruption and metabolite extraction of the earthworm Lumbricus rubellus guided by prior biological knowledge as well as metrics based on the data. In particular, we identified an unusual degree of instability of L. rubellus tissue extracts, and evaluated different approaches such as heating and filtration to counteract this. Finally, we evaluated four different solvent systems for comprehensive metabolite extraction using three analytical platforms (1H NMR spectroscopy, GC–MS, and direct-infusion FT-ICR-MS), and also compared bead-beating and cryogenic milling for tissue disruption. Initially we ranked methods by common analytical criteria (e.g. numbers and total intensity of detected peaks) in order to compare protocols. These approaches to assess protocol suitability proved to be inadequate to judge earthworm tissue extraction methods because of sample instability. Existing tissue extraction protocols should not be assumed to be automatically applicable to novel species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alvarez, M., Donarski, J., Elliott, M., & Charlton, A. (2010). Evaluation of extraction methods for use with NMR-based metabolomics in the marine polychaete ragworm, Hediste diversicolor. Metabolomics, 6(4), 541–549.

    Article  CAS  Google Scholar 

  • Ankley, G. T., Daston, G. P., Degitz, S. J., et al. (2006). Toxicogenomics in regulatory ecotoxicology. Environmental Science and Technology, 40(13), 4055–4065.

    Article  PubMed  CAS  Google Scholar 

  • Arias, M. E., Gonzalez-Perez, J. A., Gonzalez-Vila, F. J., & Ball, A. S. (2005). Soil health–a new challenge for microbiologists and chemists. Int Microbiol, 8(1), 13–21.

    PubMed  CAS  Google Scholar 

  • Banwart, S. (2011). Save our soils. Nature, 474(7350), 151–152.

    Article  PubMed  CAS  Google Scholar 

  • Becaert, V., & Deschenes, L. (2006). Using soil health to assess ecotoxicological impacts of pollutants on soil microflora. Reviews of Environmental Contamination and Toxicology, 188, 127–148.

    Article  PubMed  CAS  Google Scholar 

  • Beckonert, O., Keun, H. C., Ebbels, T. M. D., et al. (2007). Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nature Protocols, 2(11), 2692–2703.

    Article  PubMed  CAS  Google Scholar 

  • Behrends, V., Tredwell, G. D., & Bundy, J. G. (2011). A software complement to AMDIS for processing GC-MS metabolomic data. Analytical Biochemistry, 415(2), 206–208.

    Article  PubMed  CAS  Google Scholar 

  • Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Can J Biochem Physiol, 37(8), 911–917.

    Article  PubMed  CAS  Google Scholar 

  • Brown, S. A. E., Simpson, A. J., & Simpson, M. J. (2008). Evaluation of sample preparation methods for nuclear magnetic resonance metabolic profiling studies with Eisenia fetida. Environmental Toxicology and Chemistry, 27(4), 828–836.

    Article  PubMed  CAS  Google Scholar 

  • Bundy, J. G., Spurgeon, D. J., Svendsen, C., et al. (2002). Earthworm species of the genus Eisenia can be phenotypically differentiated by metabolic profiling. FEBS Letters, 521(1–3), 115–120.

    Article  PubMed  CAS  Google Scholar 

  • Bundy, J. G., Keun, H. C., Sidhu, J. K., et al. (2007). Metabolic profile biomarkers of metal contamination in a sentinel terrestrial species are applicable across multiple sites. Environmental Science and Technology, 41(12), 4458–4464.

    Article  PubMed  CAS  Google Scholar 

  • Bundy, J. G., Sidhu, J. K., Rana, F., et al. (2008). ‘Systems toxicology’ approach identifies coordinated metabolic responses to copper in a terrestrial non-model invertebrate, the earthworm Lumbricus rubellus. BMC Biology, 6, 25.

    Article  PubMed  Google Scholar 

  • Bundy, J. G., Davey, M. P., & Viant, M. R. (2009). Environmental metabolomics: A critical review and future perspectives. Metabolomics, 5(1), 3–21.

    Article  CAS  Google Scholar 

  • Chipman, J. K., Van Aggelen, G., Ankley, G. T., et al. (2010). Integrating Omic technologies into aquatic ecological risk assessment and environmental monitoring: Hurdles, achievements, and future outlook. Environmental Health Perspectives, 118(1), 1–5.

    PubMed  Google Scholar 

  • Cloarec, O., Dumas, M. E., Craig, A., et al. (2005). Statistical total correlation spectroscopy: An exploratory approach for latent biomarker identification from metabolic 1H NMR data sets. Analytical Chemistry, 77(5), 1282–1289.

    Article  PubMed  CAS  Google Scholar 

  • Darwin, C. (1838). On the formation of mould. Proceedings of the Geological Society of London, 2, 574–576.

    Google Scholar 

  • Dettmer, K., Nurnberger, N., Kaspar, H., Gruber, M. A., Almstetter, M. F., & Oefner, P. J. (2011). Metabolite extraction from adherently growing mammalian cells for metabolomics studies: Optimization of harvesting and extraction protocols. Analytical and Bioanalytical Chemistry, 399(3), 1127–1139.

    Article  PubMed  CAS  Google Scholar 

  • Dietmair, S., Timmins, N. E., Gray, P. P., Nielsen, L. K., & Kromer, J. O. (2010). Towards quantitative metabolomics of mammalian cells: Development of a metabolite extraction protocol. Analytical Biochemistry, 404(2), 155–164.

    Article  PubMed  CAS  Google Scholar 

  • Dunn, W. (2010). Metabolite identification in metabolomics. Genetic Engineering and Biotechnology News, 30(8), 36–37.

    Google Scholar 

  • Duportet, X., Aggio, R., Carneiro, S., & Villas-Boas, S. G. (2011). The biological interpretation of metabolomic data can be misled by the extraction method used. Metabolomics. doi:10.1007/s11306-011-0324-1.

  • Frampton, G. K., Jansch, S., Scott-Fordsmand, J. J., Rombke, J., & Van den Brink, P. J. (2006). Effects of pesticides on soil invertebrates in laboratory studies: A review and analysis using species sensitivity distributions. Environmental Toxicology and Chemistry, 25(9), 2480–2489.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Reyero, N., & Perkins, E. J. (2011). Systems biology: Leading the revolution in ecotoxicology. Environmental Toxicology and Chemistry, 30(2), 265–273.

    Article  PubMed  CAS  Google Scholar 

  • Geier, F. M., Want, E. J., Leroi, A. M., & Bundy, J. G. (2011). Cross-Platform comparison of Caenorhabditis elegans tissue extraction strategies for comprehensive metabolome coverage. Analytical Chemistry, 83, 3730–3736.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez, B., Francois, J., & Renaud, M. (1997). A rapid and reliable method for metabolite extraction in yeast using boiling buffered ethanol. Yeast, 13(14), 1347–1355.

    Article  PubMed  CAS  Google Scholar 

  • Guo, Q., Sidhu, J. K., Ebbels, T. M. D., et al. (2009). Validation of metabolomics for toxic mechanism of action screening with the earthworm Lumbricus rubellus. Metabolomics, 5(1), 72–83.

    Article  CAS  Google Scholar 

  • He, R. Q., Pan, R., Zhou, Y. A., & He, H. J. (2011). An enzyme from the earthworm Eisenia fetida is not only a protease but also a deoxyribonuclease. Biochemical and Biophysical Research Communications, 407(1), 113–117.

    Article  PubMed  Google Scholar 

  • Kim, H. K., Choi, Y. H., Luijendijk, T. J. C., Rocha, R. A. V., & Verpoorte, R. (2004). Comparison of extraction methods for secologanin and the quantitative analysis of secologanin from Symphoricarpos albus using H-1-NMR. Phytochemical Analysis, 15(4), 257–261.

    Article  PubMed  CAS  Google Scholar 

  • Kind, T., Wohlgemuth, G., do Lee, Y., et al. (2009). FiehnLib: Mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Analytical Chemistry, 81(24), 10038–10048.

    Article  PubMed  CAS  Google Scholar 

  • Le Belle, J. E., Harris, N. G., Williams, S. R., & Bhakoo, K. K. (2002). A comparison of cell and tissue extraction techniques using high-resolution H-1-NMR spectroscopy. NMR in Biomedicine, 15(1), 37–44.

    Article  PubMed  CAS  Google Scholar 

  • McKelvie, J. R., Wolfe, D. M., Celejewski, M., Simpson, A. J., & Simpson, M. J. (2010). Correlations of Eisenia fetida metabolic responses to extractable phenanthrene concentrations through time. Environmental Pollution, 158(6), 2150–2157.

    Article  PubMed  CAS  Google Scholar 

  • Nakajima, N., Sugimoto, M., & Ishihara, K. (2000). Stable earthworm serine proteases: Application of the protease function and usefulness of the earthworm autolysate. Journal of Bioscience and Bioengineering, 90(2), 174–179.

    PubMed  CAS  Google Scholar 

  • Owen, J., Hedley, B. A., Svendsen, C., et al. (2008). Transcriptome profiling of developmental and xenobiotic responses in a keystone soil animal, the oligochaete annelid Lumbricus rubellus. BMC Genomics, 9, 266.

    Article  PubMed  Google Scholar 

  • Payne, T. G., Southam, A. D., Arvanitis, T. N., & Viant, M. R. (2009). A signal filtering method for improved quantification and noise discrimination in fourier transform ion cyclotron resonance mass spectrometry-based metabolomics data. Journal of the American Society for Mass Spectrometry, 20(6), 1087–1095.

    Article  PubMed  CAS  Google Scholar 

  • Rabinowitz, J. D., & Kimball, E. (2007). Acidic acetonitrile for cellular metabolome extraction from Escherichia coli. Analytical Chemistry, 79(16), 6167–6173.

    Article  PubMed  CAS  Google Scholar 

  • Römisch-Margl, W., Prehn, C., Bogumil, R., Röhring, C., Suhre, K., & Adamski, J. (2011). Procedure for tissue sample preparation and metabolite extraction for high-throughput targeted metabolomics. Metabolomics. doi:10.1007/s11306-011-0293-4

  • Roots, B. I. (1956). The water relations of earthworms. II. Resistance to desiccation and immersion, and behaviour when submerged and when allowed a choice of environment. Journal of Experimental Biology, 33(1), 29–44.

    Google Scholar 

  • Sellick, C., Knight, D., Croxford, A., Maqsood, A., Stephens, G., & Goodacre, R. (2010). Evaluation of extraction processes for intracellular metabolite profiling of mammalian cells: Matching extraction approaches to cell type and metabolite targets. Metabolomics, 6, 427–438.

    Article  CAS  Google Scholar 

  • Shin, M. H., do Lee, Y., Liu, K. H., Fiehn, O., & Kim, K. H. (2010). Evaluation of sampling and extraction methodologies for the global metabolic profiling of Saccharophagus degradans. Analytical Chemistry, 82(15), 6660–6666.

    Article  PubMed  CAS  Google Scholar 

  • Simpson, M. J., & McKelvie, J. R. (2009). Environmental metabolomics: New insights into earthworm ecotoxicity and contaminant bioavailability in soil. Analytical and Bioanalytical Chemistry, 394(1), 137–149.

    Article  PubMed  CAS  Google Scholar 

  • Snape, J. R., Maund, S. J., Pickford, D. B., & Hutchinson, T. H. (2004). Ecotoxicogenomics: The challenge of integrating genomics into aquatic and terrestrial ecotoxicology. Aquatic Toxicology, 67(2), 143–154.

    Article  PubMed  CAS  Google Scholar 

  • Southam, A. D., Payne, T. G., Cooper, H. J., Arvanitis, T. N., & Viant, M. R. (2007). Dynamic range and mass accuracy of wide-scan direct infusion nanoelectrospray fourier transform ion cyclotron resonance mass spectrometry-based metabolomics increased by the spectral stitching method. Analytical Chemistry, 79(12), 4595–4602.

    Article  PubMed  CAS  Google Scholar 

  • Spurgeon, D. J., Weeks, J. M., & Van Gestel, C. A. M. (2003). A summary of eleven years progress in earthworm ecotoxicology. Pedobiologia, 47(5–6), 588–606.

    Google Scholar 

  • Sturzenbaum, S. R., Andre, J., Kille, P., & Morgan, A. J. (2009). Earthworm genomes, genes and proteins: The (re)discovery of Darwin’s worms. Proceedings of the Royal Society B-Biological Sciences, 276(1658), 789–797.

    Article  CAS  Google Scholar 

  • Taylor, N. S., Weber, R. J. M., Southam, A. D., et al. (2009). A new approach to toxicity testing in Daphnia magna: Application of high throughput FT-ICR mass spectrometry metabolomics. Metabolomics, 5(1), 44–58.

    Article  CAS  Google Scholar 

  • Taylor, N. S., Weber, R. J., White, T. A., & Viant, M. R. (2010). Discriminating between different acute chemical toxicities via changes in the daphnid metabolome. Toxicological Sciences, 118(1), 307–317.

    Article  PubMed  CAS  Google Scholar 

  • Tremaroli, V., Workentine, M. L., Weljie, A. M., et al. (2009). Metabolomic investigation of the bacterial response to a metal challenge. Applied and Environmental Microbiology, 75(3), 719–728.

    Article  PubMed  CAS  Google Scholar 

  • Weber, R. J., Southam, A. D., Sommer, U., & Viant, M. R. (2011). Characterization of isotopic abundance measurements in high resolution FT-ICR and Orbitrap mass spectra for improved confidence of metabolite identification. Analytical Chemistry, 83(10), 3737–3743.

    Article  PubMed  CAS  Google Scholar 

  • Wu, H. F., Southam, A. D., Hines, A., & Viant, M. R. (2008). High-throughput tissue extraction protocol for NMRand MS-based metabolomics. Analytical Biochemistry, 372(2), 204–212.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Olaf Beckonert (Imperial College London) for assistance with NMR spectroscopy, Volker Behrends (Imperial College London) for assistance with data processing, Mark Viant and Ulf Sommer (University of Birmingham) for discussion of MS data, and David Spurgeon and Claus Svendsen (CEH Wallingford) for supplying L. rubellus worms and scientific discussion. This work was supported by the UK Natural Environment Research Council (NERC), grant number NE/H009973/1, and in part supported by the NERC Biomolecular Analysis Facility at the University of Birmingham (R8-H10-61) with the FT-ICR MS analysis conducted by Ulf Sommer and Mark Viant. This instrument was obtained through the Birmingham Science City Translational Medicine: Experimental Medicine Network of Excellence project, with support from Advantage West Midlands.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob G. Bundy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11306_2011_377_MOESM1_ESM.pdf

Table S1 listing methods used for tissue extraction in other earthworm metabolomics studies. Supporting methods information S2. Figures S3 – S7. (PDF 699 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liebeke, M., Bundy, J.G. Tissue disruption and extraction methods for metabolic profiling of an invertebrate sentinel species. Metabolomics 8, 819–830 (2012). https://doi.org/10.1007/s11306-011-0377-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-011-0377-1

Keywords

Navigation