Skip to main content
Log in

Comparison of tissue harvest protocols for the quantitation of acylcarnitines in mouse heart and liver by mass spectrometry

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Profiling of acylcarnitines (ACs) in tissues and biological fluids by mass spectrometry is a powerful approach to examine the impact of genetic, pharmacological, and environmental factors on intermediary metabolism. The AC pool exhibits rapid changes in composition and abundance in response to altered cellular fuel catabolism. However, the mercurial nature of the AC pool makes it prone to spurious influences arising from experimental variables related to tissue harvesting and processing. We evaluated the impact of various strategies to anesthetize, sedate, or euthanize (A/S/E) mice which included Nembutal, Beuthanasia, isoflurane, ketamine/xylazine (Ket/Xy) and CO2/cervical dislocation (CD) on the tissue AC profiles. ACs extracted from heart and liver were derivatized to methyl esters and quantitated by mass spectrometry. Marked differences were seen in the tissue AC profiles, especially in heart, depending upon the choice of the A/S/E strategy. Most importantly, a uniform A/S/E protocol must be employed. While tissue AC profiles in situ cannot be unambiguously defined, use of Nembutal appears to be superior to other A/S/E strategies especially when assessing the AC levels in the heart. We also showed that it is preferable to expeditiously harvest and flash-freeze tissues to avoid procedure-related perturbation of the AC profile. A more protracted tissue harvest, when recovering numerous tissues from the same animal, can alter the AC pool. In conclusion, this investigation provides key guidance for harvesting heart and liver from mice in order to minimize the procedure-associated change of the AC pool which can mask the influence of the intended experimental variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AC:

Acylcarnitine

CD:

Cervical dislocation

References

  • Álvarez-Sánchez, B., Priego-Capote, F., & Luque de Castro, M. D. (2010). Metabolomics analysis II. Preparation of biological samples prior to detection. TrAC Trends in Analytical Chemistry, 29, 120–127.

    Article  Google Scholar 

  • An, J., Muoio, D. M., Shiota, M., Fujimoto, Y., Cline, G. W., Shulman, G. I., et al. (2004). Hepatic expression of malonyl-CoA decarboxylase reverses muscle, liver and whole-animal insulin resistance. Nature Medicine, 10, 268–274.

    Article  PubMed  CAS  Google Scholar 

  • Bain, J. R., Stevens, R. D., Wenner, B. R., Ilkayeva, O., Muoio, D. M., & Newgard, C. B. (2009). Metabolomics applied to diabetes research; Moving from information to knowledge. Diabetes, 58, 2429–2443.

    Article  PubMed  CAS  Google Scholar 

  • Beger, R. D., Sun, J., & Schnackenberg, L. K. (2010). Metabolomics approaches for discovering biomarkers of drug-induced hepatotoxicity and nephrotoxicity. Toxicology and Applied Pharmacology, 243, 154–166.

    Article  PubMed  CAS  Google Scholar 

  • Brass, E. P., & Hoppel, C. L. (1981). In vivo studies of carnitine and fatty acid metabolism: Problems with the use of anesthetics. Analytical Biochemistry, 110, 77–81.

    Article  PubMed  CAS  Google Scholar 

  • Bremer, J. (1990). The role of carnitine in intracellular metabolism. Journal of Clinical Chemistry and Clinical Biochemistry, 28, 297–301.

    CAS  Google Scholar 

  • Bruce, S. J., Tavazzi, I., Parisod, V., Rezzi, S., Kochhar, S., & Guy, P. A. (2009). Investigation of human blood plasma sample preparation for performing metabolomics using ultrahigh performance liquid chromatography/mass spectrometry. Analytical Chemistry, 81, 3285–3296.

    Article  PubMed  CAS  Google Scholar 

  • Camina, M. F., Rozas, I., Gomez, M., Paz, J. M., Alonso, C., & Rodriguez-Segade, S. (1991). Short-term effects of administration of anticonvulsant drugs on free carnitine and acycarnitine in mouse serum and tissues. British Journal of Pharmacology, 103, 1179–1183.

    Article  PubMed  CAS  Google Scholar 

  • Chace, D. H., Hillman, S. L., van Hove, J. L. K., & Naylor, E. W. (1997). Rapid diagnosis of MCAD deficiency: Quantitative analysis of octanoylcarnitine and other acylcarnitines in newborn blood spots by tandem mass spectrometry. Clinical Chemistry, 43, 2106–2113.

    PubMed  CAS  Google Scholar 

  • Ford, D. A., Han, X., Horner, C. C., & Gross, R. W. (1996). Accumulation of unsaturated acylcarnitine molecular species during acute myocardial ischemia: Metabolic compartmentalization of produces of fatty acyl chain elongation in the acylcarnitine pool. Biochemistry, 35, 7903–7909.

    Article  PubMed  CAS  Google Scholar 

  • French, T. J., Goode, A. W., & Sugden, M. C. (1986). Ischaemia and tissue pyruvate activities in the rat: a comparison of the effects of cervical dislocation and pentobarbital anesthesia. Biochemistry International, 13, 843–852.

    PubMed  CAS  Google Scholar 

  • Hirschey, M. D., Shimazu, T., Goetzman, E., Jing, E., Schwer, B., Lombard, D. B., et al. (2010). SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature, 464, 121–125.

    Article  PubMed  CAS  Google Scholar 

  • Jensen, M. V., Joseph, J. W., Olga Ilkayeva, O., Burgess, S., Lu, D., Ronnebaum, S. M., et al. (2006). Compensatory responses to pyruvate carboxylase suppression in Islet β-cells. Preservation of glucose-stimulated insulin secretion. Journal of Biological Chemistry, 281, 22342–22351.

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi, H., Hirakawa, K., Miyauchi, K., Koike, K., Ohno, Y., & Sakamoto, A. (2010). Pattern recognition analysis of proton nuclear magnetic resonance spectra of brain tissue extracts from rats anesthetized with propofol or Isoflurane. PLoS One, 5, e11172.

    Article  PubMed  Google Scholar 

  • Kien, C. L., Everingham, K. I., Stevens, R. D., Fukagawa, N. K., & Muoio, D. M. (2011). Short-term effects of dietary fatty acids on muscle lipid composition and serum acylcarnitine profile in human subjects. Obesity, 19, 305–311.

    Article  PubMed  CAS  Google Scholar 

  • Koves, T. R., Ussher, J. R., Noland, R. C., Slentz, D., Mosedale, M., Ilkayeva, O., et al. (2008). Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metabolism, 7, 45–56.

    Article  PubMed  CAS  Google Scholar 

  • Lin, C. Y., Wu, H., Tjeerdema, R. S., & Viant, M. R. (2007). Evaluation of metabolite extraction strategies from tissue samples using NMR metabolomics. Metabolomics, 3, 55–67.

    Article  CAS  Google Scholar 

  • Ljubkovic, M., Mio, Y., Marinovic, J., Stadnicka, A., Warltier, D. C., Bosnjak, Z. J., et al. (2007). Isoflurane preconditioning uncouples mitochondria and protects against hypoxia-reoxygenation. American Journal of Physiology-Cell Physiology, 292, C1583–C1590.

    Article  PubMed  CAS  Google Scholar 

  • Mancuso, D. J., Abendschein, D. R., Jenkins, C. M., Han, X., Saffitz, J. E., Schuessler, R. B., et al. (2003). Cardiac ischemia activates calcium-independent phospholipase A2β, precipitating ventricular tachyarrhythmias in transgenic mice. Journal of Biological Chemistry, 278, 22231–22236.

    Article  PubMed  CAS  Google Scholar 

  • Masson, P., Alves, A. C., Ebbels, T. M. D., Nicholson, J. K., & Want, E. J. (2010). Optimization and evaluation of metabolite extraction protocols for untargeted metabolic profiling of liver samples by UPLC-MS. Analytical Chemistry, 82, 7779–7786.

    Article  PubMed  CAS  Google Scholar 

  • Mendrick, D. L., & Schnackenberg, L. (2009). Genomic and metabolomics advances in the identification of disease and adverse event biomarkers. Biomarkers in Medicine, 3, 605–615.

    Article  PubMed  CAS  Google Scholar 

  • Millington, D. S., Kodo, N., Norwood, D. L., & Roe, C. R. (1990). Tandem mass spectrometry: A new method for acycarntine profling with potential for neonatal screening for inborn errors of metabolism. Journal of Inherited Metabolic Disease, 13, 321–324.

    Article  PubMed  CAS  Google Scholar 

  • Newgard, C. B., An, J., Bain, J. R., Muehlbauer, M. J., Stevens, R. D., Lien, L. F., et al. (2009). Metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metabolism, 9, 311–326.

    Article  PubMed  CAS  Google Scholar 

  • Nicholson, J. K., & Lindon, J. C. (2008). Metabonomics. Nature, 455, 1054–1056.

    Article  PubMed  CAS  Google Scholar 

  • Park, E.-S., Daily, J. W., & Sachan, D. S. (2001). Anesthetics and cardiocentesis increased urinary carnitine excretion in rats and guinea pigs. Nutrition Research, 21, 531–540.

    Article  CAS  Google Scholar 

  • Ramsay, R. R., & Zammit, V. A. (2004). Carnitine acyltransferases and their influence on CoA pools in health and disease. Molecular Aspects of Medicine, 25, 475–493.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, D. G., Reily, M. D., & Baker, D. (2007). Metabonomics in pharmaceutical discovery and development. Journal of Proteome Research, 6, 526–539.

    Article  PubMed  CAS  Google Scholar 

  • Sedlic, F., Pravdic, D., Hirata, N., Mio, Y., Sepac, A., Camara, A. K., et al. (2010). Monitoring mitochondrial electron fluxes using NAD(P)H-flavoprotein fluormetry reveals complex action of isoflurane on cardiomyocytes. Biochimica et Biophysica Acta, 1797, 1749–1758.

    Article  PubMed  CAS  Google Scholar 

  • Seifert, E. L., Fiehn, O., Bezaire, V., Bickel, D. R., Wohlgemuth, G., Adams, S. H., et al. (2010). Long-chain fatty acid combustion rate is associated with unique metabolite profiles in skeletal muscle mitochondria. PLoS One, 5, e9834.

    Article  PubMed  Google Scholar 

  • Sewell, A. C., & Böhles, H. J. (1995). Acylcarnitines in intermediary metabolism. European Journal of Pediatrics, 154, 871–877.

    Article  PubMed  CAS  Google Scholar 

  • Son, N. H., Yu, S., Tuinei, J., Arai, K., Hamai, H., Homma, S., et al. (2010). PPARγ-induced cardiolipotoxicity in mice is ameliorated by PPARα deficiency despite increases in fatty acid oxidation. Journal of Clinical Investigation, 120, 3443–3454.

    Article  PubMed  CAS  Google Scholar 

  • Sreekumar, A., Poisson, L. M., Rajendiran, T. M., Khan, A. P., Cao, Q., Yu, J., et al. (2009). Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature, 457, 910–914.

    Article  PubMed  CAS  Google Scholar 

  • Su, X., Han, X., Mancuso, D. J., Abendschein, D. R., & Gross, R. W. (2005). Accumulation of long-chain acylcarnitine and 3-hydroxy acylcarnitine molecular species in diabetic myocardium: Identification of alterations in mitochondrial fatty acid processing in diabetic myocardium by shotgun lipidomics. Biochemistry, 44, 5234–5245.

    Article  PubMed  CAS  Google Scholar 

  • Turer, A. T., Stevens, R. D., Bain, J. R., Muehlbauer, M. J., van der Westhuizen, J., Mathew, J. P., et al. (2009). Metabolomic profiling reveals distinct patterns of myocardial substrate use in humans with coronary artery disease or left ventricular dysfunction during surgical ischemia/reperfusion. Circulation, 119, 1736–1746.

    Article  PubMed  CAS  Google Scholar 

  • Van Vlies, N., Tan, L., Overmars, H., Bootsma, A. H., Kulik, W., Wanders, R. J. A., et al. (2005). Characterization of carnitine and fatty acid metabolism in the long-chain acyl-CoA dehydrogenase-deficient mouse. Biochemical Journal, 387, 185–193.

    Article  PubMed  Google Scholar 

  • Wang, L., Ko, K. W. S., Lucchinetti, E., Zhang, L., Troxler, H., Hersberger, M., et al. (2010). Metabolic profiling of hearts exposed to sevoflurane and propofol reveals distinct regulation of fatty acid and glucose oxidation: CD36 and pyruvate dehydrogenase as key regulators in anesthetic-induced fuel shift. Anesthesiology, 113, 541–551.

    PubMed  CAS  Google Scholar 

  • Yanes, O., Clark, J., Wong, D. M., Patti, G. J., Sánchez-Ruiz, A., Benton, H. P., et al. (2010). Metabolic oxidation regulates embryonic stem cell differentiation. Nature Chemical Biology, 6, 411–417.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Drs. Robert Stevens and Brett Wenner from the Sarah W. Stedman Nutrition and Metabolism Center at Duke University School of Medicine for their assistance in validating the acylcarnitine assay. We also thank Jessica M. Nigro of the Sanford-Burnham Medical Research Institute for harvesting tissues from mice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Petucci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 141 kb)

Supplementary material 2 (DOCX 1095 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petucci, C., Rojas-Betancourt, S. & Gardell, S.J. Comparison of tissue harvest protocols for the quantitation of acylcarnitines in mouse heart and liver by mass spectrometry. Metabolomics 8, 784–792 (2012). https://doi.org/10.1007/s11306-011-0370-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-011-0370-8

Keywords

Navigation