Skip to main content

Advertisement

Log in

Stable isotope resolved metabolomics of lung cancer in a SCID mouse model

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

We have determined the time course of [U-13C]-glucose utilization and transformations in SCID mice via bolus injection of the tracer in the tail vein. Incorporation of 13C into metabolites extracted from mouse blood plasma and several tissues (lung, heart, brain, liver, kidney, and skeletal muscle) were profiled by NMR and GC–MS, which helped ascertain optimal sampling times for different target tissues. We found that the time for overall optimal 13C incorporation into tissue was 15–20 min but with substantial differences in 13C labeling patterns of various organs that reflected their specific metabolism. Using this stable isotope resolved metabolomics (SIRM) approach, we have compared the 13C metabolite profile of the lungs in the same mouse with or without an orthotopic lung tumor xenograft established from human PC14PE6 lung adenocarcinoma cells. The 13C metabolite profile shows considerable differences in [U-13C]-glucose transformations between the two lung tissues, demonstrating the feasibility of applying SIRM to investigate metabolic networks of human cancer xenograft in the mouse model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BHT:

Butylated hydroxytoluene

DSS:

2,2′Dimethylsilapentane-5-sulfonate

MTBSTFA:

N-methyl-N-[tert-butyl-dimethylsilyl]trifluoroacetamide

NSCLC:

Non small cell lung cancer

SIRM:

Stable isotope resolved metabolomics

References

  • Artemov, D., Bhujwalla, Z. M., & Glickson, J. D. (1995). In vivo selective measurement of (1-13C)-glucose metabolism in tumors by heteronuclear cross polarization. Magnetic Resonance in Medicine, 33, 151–155.

    Article  PubMed  CAS  Google Scholar 

  • Artemov, D., Bhujwalla, Z. M., Pilatus, U., & Glickson, J. D. (1998). Two-compartment model for determination of glycolytic rates of solid tumors by in vivo 13C NMR spectroscopy. NMR in Biomedicine, 11, 395–404.

    Article  PubMed  CAS  Google Scholar 

  • Bak, L. K., Waagepetersen, H. S., Melo, T. M., Schousboe, A., & Sonnewald, U. (2007). Complex glutamate labeling from [U-C-13]glucose or [U-C-13]lactate in co-cultures of cerebellar neurons and astrocytes. Neurochemical Research, 32, 671–680.

    Article  PubMed  CAS  Google Scholar 

  • Bartlett, S., Espinal, J., Janssens, P., & Ross, B. D. (1984). The influence of renal function on lactate and glucose metabolism. Biochemical Journal, 219, 73–78.

    PubMed  CAS  Google Scholar 

  • Beger, R., Hansen, D., Schnackenberg, L., Cross, B., Fatollahi, J., Lagunero, F., et al. (2009). Single valproic acid treatment inhibits glycogen and RNA ribose turnover while disrupting glucose-derived cholesterol synthesis in liver as revealed by the [U-13C6]-d-glucose tracer in mice. Metabolomics, 5, 336–345.

    Article  PubMed  CAS  Google Scholar 

  • Bhujwalla, Z. M., Shungu, D. C., Chatham, J. C., Wehrle, J. P., & Glickson, J. D. (1994). Glucose metabolism in RIF-1 tumors after reduction in blood flow: an in vivo 13C and 31P NMR study. Magnetic Resonance in Medicine, 32, 303–309.

    Article  PubMed  CAS  Google Scholar 

  • Chance, B., Nakase, Y., Bond, M., Leigh, J. S., Jr., & McDonald, G. (1978). Detection of 31P nuclear magnetic resonance signals in brain by in vivo and freeze-trapped assays. Proceedings of the National Academy of Sciences of the United States of America, 75, 4925–4929.

    Article  PubMed  CAS  Google Scholar 

  • DeBerardinis, R. J., Mancuso, A., Daikhin, E., Nissim, I., Yudkoff, M., Wehrli, S., et al. (2007). Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proceedings of the National Academy of Sciences of the United States of America, 104, 19345–19350.

    Article  PubMed  CAS  Google Scholar 

  • Delgado, T. C., Castro, M. M., Geraldes, C. F., & Jones, J. G. (2004). Quantitation of erythrocyte pentose pathway flux with [2-(13)]glucose and H-1 NMR analysis of the lactate methyl signal. Magnetic Resonance in Medicine, 51, 1283–1286.

    Article  PubMed  CAS  Google Scholar 

  • Downs, C. J., Hayes, J. P., & Tracy, C. R. (2008). Scaling metabolic rate with body mass and inverse body temperature: A test of the Arrhenius fractal supply model. Functional Ecology, 22, 239–244.

    Article  Google Scholar 

  • Fan, T., Bandura, L., Higashi, R., & Lane, A. (2005). Metabolomics-edited transcriptomics analysis of Se anticancer action in human lung cancer cells. Metabolomics Journal, 1, 325–339.

    Article  CAS  Google Scholar 

  • Fan, T. W. M., Higashi, R. M., & Lane, A. N. (1988). An invivo H-1 and P-31 NMR investigation of the effect of nitrate on hypoxic metabolism in maize roots. Archives of Biochemistry and Biophysics, 266, 592–606.

    Article  PubMed  CAS  Google Scholar 

  • Fan, T. W. M., Higashi, R. M., Lane, A. N., & Jardetzky, O. (1986). Combined use of proton NMR and gas chromatography-mass spectra for metabolite monitoring and in vivo proton NMR assignments. Biochimica et Biophysica Acta, 882, 154–167.

    PubMed  CAS  Google Scholar 

  • Fan, T. W.-M., Kucia, M., Jankowski, K., Higashi, R. M., Rataczjak, M. Z., Rataczjak, J., et al. (2008). Proliferating Rhabdomyosarcoma cells shows an energy producing anabolic metabolic phenotype compared with primary myocytes. Molecular Cancer, 7, 79.

    Article  PubMed  Google Scholar 

  • Fan, T. W., & Lane, A. N. (2008). Structure-based profiling of metabolites and isotopomers by NMR. Progress in NMR Spectroscopy, 52, 69–117.

    Article  CAS  Google Scholar 

  • Fan, T. W. M., Lane, A. N., & Higashi, R. M. (2003). In vivo and in vitro metabolomic analysis of anaerobic rice coleoptiles revealed unexpected pathways. Russian Journal of Plant Physiology, 50, 787–793.

    Article  CAS  Google Scholar 

  • Fan, T. W., Lane, A. N., Higashi, R. M., Bousamra, M., II, Kloecker, G., & Miller, D. M. (2009a). Metabolic profiling identifies lung tumor responsiveness to erlotinib. Experimental and Molecular Pathology, 87, 83–86.

    Article  PubMed  CAS  Google Scholar 

  • Fan, T. W., Lane, A. N., Higashi, R. M., Farag, M. A., Gao, H., Bousamra, M., et al. (2009b). Altered regulation of metabolic pathways in human lung cancer discerned by 13C stable isotope-resolved metabolomics (SIRM). Molecular Cancer, 8, 41.

    Article  PubMed  Google Scholar 

  • Fan, T. W.-M., Yuan, P., Lane, A. N., Higashi, R. M., Wang, Y., Hamidi, A., et al. (2010). Stable isotope-resolved metabolomic analysis of lithium effects on glial-neuronal metabolism and interactions. Metabolomics, 6, 165–179.

    Article  PubMed  CAS  Google Scholar 

  • Glazier, D. S. (2008). Effects of metabolic level on the body size scaling of metabolic rate in birds and mammals. Proceedings of the Royal Society B: Biological Sciences, 275, 1405–1410.

    Article  PubMed  Google Scholar 

  • Gruetter, R., Adriany, G., Choi, I. Y., Henry, P. G., Lei, H., & Oz, G. (2003). Localized in vivo 13C NMR spectroscopy of the brain. NMR in Biomedicine, 16, 313–338.

    Article  PubMed  CAS  Google Scholar 

  • Gruetter, R., Magnusson, I., Rothman, D. L., Avison, M. J., Shulman, R. G., & Shulman, G. I. (1994). Validation of 13C NMR measurements of liver glycogen in vivo. Magnetic Resonance in Medicine, 31, 583–588.

    Article  PubMed  CAS  Google Scholar 

  • Hers, H. G. (1976). The control of glycogen metabolism in the liver. Annual Review of Biochemistry, 45, 167–189.

    Article  PubMed  CAS  Google Scholar 

  • Jitrapakdee, S., St Maurice, M., Rayment, I., Cleland, W. W., Wallace, J. C., & Attwood, P. V. (2008). Structure, mechanism and regulation of pyruvate carboxylase. Biochemical Journal, 413, 369–387.

    Article  PubMed  CAS  Google Scholar 

  • Kawashima, K., Miwa, Y., Fujimoto, K., Matsumoto, J., Kimura, M., & Nagakura, A. (1985). Hypotensive effect of bunitrolol at low plasma concentrations in conscious, unrestrained spontaneously hypertensive rats. Japanese Journal of Pharmacology, 38, 259–265.

    Article  PubMed  CAS  Google Scholar 

  • Khairallah, M., Labarthe, F., Bouchard, B., Danialou, G. T., Petrof, B. J., & Des Rosiers, C. (2004). Profiling substrate fluxes in the isolated working mouse heart using C-13-labeled substrates: Focusing on the origin and fate of pyruvate and citrate carbons. American Journal of Physiology: Heart and Circulatory Physiology, 286, H1461–H1470.

    Article  PubMed  CAS  Google Scholar 

  • Lane, A. N., & Fan, T. W. (2007). Quantification and identification of isotopomer distributions of metabolites in crude cell extracts using 1H TOCSY. Metabolomics, 3, 79–86.

    Article  CAS  Google Scholar 

  • Lane, A. N., Fan, T. W., & Higashi, R. M. (2008). Isotopomer-based metabolomic analysis by NMR and mass spectrometry. Methods in Cell Biology, 84, 541–588.

    Article  PubMed  CAS  Google Scholar 

  • Lane, A. N., Fan, T. W.-M., & Higashi, R. M. (2009a). Metabolic acidosis and the importance of balanced equations. Metabolomics, 5, 163–165.

    Article  CAS  Google Scholar 

  • Lane, A. N., Fan, T. W., Higashi, R. M., Tan, J., Bousamra, M., & Miller, D. M. (2009b). Prospects for clinical cancer metabolomics using stable isotope tracers. Journal of Experimental and Molecular Pathology, 86, 165–173.

    Article  CAS  Google Scholar 

  • Longmore, W. J., & Mourning, J. T. (1976). Lactate production in isolated perfused rat lung. American Journal of Physiology, 231, 351–354.

    PubMed  CAS  Google Scholar 

  • Mancuso, A., Zhu, A. Z., Beardsley, N. J., Glickson, J. D., Wehrli, S., & Pickup, S. (2005). Artificial tumor model suitable for monitoring P-31 and C-13 NMR spectroscopic changes during chemotherapy-induced apoptosis in human glioma cells. Magnetic Resonance in Medicine, 54, 67–78.

    Article  PubMed  CAS  Google Scholar 

  • Mason, G. F., Petersen, K. F., de Graaf, R. A., Shulman, G. I., & Rothman, D. L. (2007). Measurements of the anaplerotic rate in the human cerebral cortex using C-13 magnetic resonance spectroscopy and [1-C-13] and [2-C-13] glucose. Journal of Neurochemistry, 100, 73–86.

    Article  PubMed  CAS  Google Scholar 

  • Mendes, A. C., Caldeira, M. M., Silva, C., Burgess, S. C., Merritt, M. E., Gomes, F., et al. (2006). Hepatic UDP-glucose C-13 isotopomers from [U-C-13]glucose: A simple analysis by C-13 NMR of urinary menthol glucuronide. Magnetic Resonance in Medicine, 56, 1121–1125.

    Article  PubMed  CAS  Google Scholar 

  • Onn, A., Isobe, T., Itasaka, S., Wu, W. J., O’Reilly, M. S., Hong, W. K., et al. (2003). Development of an orthotopic model to study the biology and therapy of primary human lung cancer in nude mice. Clinical Cancer Research, 9, 5532–5539.

    PubMed  CAS  Google Scholar 

  • Owen, O. E., Morgan, A. P., Kemp, H. G., Sullivan, J. M., Herrera, M. G., & Cahill, G. F., Jr. (1967). Brain metabolism during fasting. Journal of Clinical Investigation, 46, 1589–1595.

    Article  PubMed  CAS  Google Scholar 

  • PaineMurrieta, G. D., Taylor, C. W., Curtis, R. A., Lopez, M. H. A., Dorr, R. T., Johnson, C. S., et al. (1997). Human tumor models in the severe combined immune deficient (SCID) mouse. Cancer Chemotherapy and Pharmacology, 40, 209–214.

    Article  CAS  Google Scholar 

  • Richmond, A., & Su, Y. J. (2008). Mouse xenograft models vs GEM models for human cancer therapeutics. Disease Models & Mechanisms, 1, 78–82.

    Article  Google Scholar 

  • Roizen, M. F., Moss, J., Henry, D. P., Weise, V., & Kopin, I. J. (1978). Effect of general anesthetics on handling- and decapitation-induced increases in sympathoadrenal discharge. Journal of Pharmacology and Experimental Therapeutics, 204, 11–18.

    PubMed  CAS  Google Scholar 

  • Thornburg, J. M., Nelson, K. K., Lane, A. N., Arumugam, S., Simmons, A., Eaton, J. W., et al. (2008). Targeting aspartate aminotransferase in breast cancer. Breast Cancer Research, 10, R84.

    Article  PubMed  Google Scholar 

  • Timmerman, W., Cisci, G., Nap, A., de Vries, J. B., & Westerink, B. H. (1999). Effects of handling on extracellular levels of glutamate and other amino acids in various areas of the brain measured by microdialysis. Brain Research, 833, 150–160.

    Article  PubMed  CAS  Google Scholar 

  • Vizan, P., Boros, L. G., Figueras, A., Capella, G., Mangues, R., Bassilian, S., et al. (2005). K-ras codon-specific mutations produce distinctive metabolic phenotypes in human fibroblasts. Cancer Research, 65, 5512–5515.

    Article  PubMed  CAS  Google Scholar 

  • White, C. R., Terblanche, J. S., Kabat, A. P., Blackburn, T. M., Chown, S. L., & Butler, P. J. (2008). Allometric scaling of maximum metabolic rate: The influence of temperature. Functional Ecology, 22, 616–623.

    Article  Google Scholar 

  • Woods, H. F., & Krebs, H. A. (1971). Lactate production in the perfused rat liver. Biochemical Journal, 125, 129–139.

    PubMed  CAS  Google Scholar 

  • Zwingmann, C., & Leibfritz, D. (2003). Regulation of glial metabolism studied by C-13-NMR. NMR in Biomedicine, 16, 370–399.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Science Foundation EPSCoR grant # EPS-0447479, NIH Grant Number P20RR018733 from the National Center for Research Resources, 1R01CA118434-01A2 (to TWMF), R01CA-086412 and RO1 CA150947 (to JY) from the National Cancer Institute, the Kentucky Challenge for Excellence, Susan G. Komen Foundation BCTR0503648 and NCI R21CA133688 (to ANL), and the Brown Foundation. We thank J. Tan, Ruifeng Su and Mr. Richard Hansen for technical assistance. We also thank the two reviewers for many useful comments and additional references to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa W.-M. Fan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2356 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, T.WM., Lane, A.N., Higashi, R.M. et al. Stable isotope resolved metabolomics of lung cancer in a SCID mouse model. Metabolomics 7, 257–269 (2011). https://doi.org/10.1007/s11306-010-0249-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-010-0249-0

Keywords

Navigation