Skip to main content
Log in

Quantitative analysis of metabolite concentrations in human urine samples using 13C{1H} NMR spectroscopy

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Targeted profiling is a library-based method of using mathematically modeled reference spectra for quantification of metabolite concentrations in NMR mixture analysis. Metabolomics studies of biofluids, such as urine, represent a highly complex problem in this area, and for this reason targeted profiling of 1H NMR spectra can be hampered. A number of the issues relating to 1H NMR spectroscopy can be overcome using 13C{1H} NMR spectroscopy. In this work, a 13C{1H} NMR database was created using Chenomx NMR Suite, incorporating 120 metabolites. The 13C{1H} NMR database was standardized through the analysis of a series of metabolite solutions containing varying concentrations of 19 distinct metabolites, where the metabolite concentrations were varied across a range of values including biological ranges. Subsequently, the NMR spectra of urine samples were collected using 13C{1H} NMR spectroscopy and profiled using the 13C{1H} NMR library. In total, about 30 metabolites were conclusively identified and quantified in the urine samples using 13C{1H} NMR targeted profiling. The proton decoupling and larger spectral window provided easier identification and more accurate quantification for specific classes of metabolites, such as sugars and amino acids with overlap in the aliphatic region of the 1H NMR spectrum. We discuss potential application areas in which 13C{1H} NMR targeted profiling may be superior to 1H NMR targeted profiling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aardema, M. J., & MacGregor, J. T. (2002). Toxicology and genetic toxicology in the new era of “toxicogenetics”: Impact of “-omics” technologies. Mutation Research, 499, 13–25. doi:10.1016/S0027-5107(01)00292-5.

    PubMed  CAS  Google Scholar 

  • Belton, P. S., Colquhoun, I. J., Kemsley, E. K., et al. (1998). Application of chemometrics to the 1H NMR spectra of apple juices: Discrimination between apple varieties. Food Chemistry, 61, 207–213. doi:10.1016/S0308-8146(97)00103-9.

    Article  CAS  Google Scholar 

  • Bermel, W., Bertini, I., Felli, I. C., Piccioli, M., & Pierattelli, R. (2006). 13C-detected protonless NMR spectroscopy of proteins in solution. Progress in Nuclear Magnetic Resonance Spectroscopy, 48, 25–45. doi:10.1016/j.pnmrs.2005.09.002.

    Article  CAS  Google Scholar 

  • Burchiel, S. W., Knall, C. M., Davis, J. W., Paules, R. C., Boggs, S. E., & Afshari, C. A. (2001). Analysis of genetic and epigenetic mechanisms of toxicity: Potential roles of toxicogenomics and proteomics in toxicology. Toxicological Sciences, 59, 193–195. doi:10.1093/toxsci/59.2.193.

    Article  PubMed  CAS  Google Scholar 

  • Chatham, J. C., & Seymour, A.-M. L. (2002). Cardiac carbohydrate metabolism in Zucker diabetic fatty rats. Cardiovascular Research, 55, 104–112. doi:10.1016/S0008-6363(02)00399-1.

    Article  PubMed  CAS  Google Scholar 

  • Consonni, R., Cagliani, L. R., Benevelli, F., Spraul, M., Humpfer, E., & Stocchero, M. (2008). NMR and chemometric methods: A powerful combination for characterization of balsamic and traditional balsamic vinegars of Modena. Analytica Chimica Acta, 611, 31–40. doi:10.1016/j.aca.2008.01.065.

    Article  PubMed  CAS  Google Scholar 

  • Duarte, I. F., Barros, A., Almeida, C., Spraul, M., & Gil, A. M. (2004). Multivariate analysis of NMR and FTIR data as a potential tool for the quality control of beer. Journal of Agricultural and Food Chemistry, 52, 1031–1038. doi:10.1021/jf030659z.

    Article  PubMed  CAS  Google Scholar 

  • Duus, J. Ø., Goftredsen, C. H., & Bock, K. (2000). Carbohydrate structural determination by NMR spectroscopy: Modern methods and limitations. Chemical Reviews, 100, 4589–4614. doi:10.1021/cr990302n.

    Article  PubMed  CAS  Google Scholar 

  • Eriksson, L., Antti, H., Gottfries, J., et al. (2004). Using chemometrics for navigating in the large data sets of genomics, proteomics, and metabonomics (gpm). Analytical and Bioanalytical Chemistry, 380, 419–429. doi:10.1007/s00216-004-2783-y.

    Article  PubMed  CAS  Google Scholar 

  • Fan, T. W.-N. (1996). Metabolite profiling by one- and two-dimensional NMR analysis of complex mixtures. Progress in Nuclear Magnetic Resonance Spectroscopy, 28, 161–219.

    CAS  Google Scholar 

  • Fan, T. W. M., Lane, A. N., Shenker, M., Bartley, J. P., Crowley, D., & Higashi, R. M. (2001). Comprehensive chemical profiling of gramineous plant root exudates using high-resolution NMR and MS. Phytochemistry, 57, 209–221. doi:10.1016/S0031-9422(01)00007-3.

    Article  PubMed  CAS  Google Scholar 

  • Fiehn, O., Kopka, J., Dörmann, P., Altmann, T., Trethewey, R. N., & Willmitzer, L. (2000). Metabolite profiling for plant functional genomics. Nature Biotechnology, 18, 1157–1161. doi:10.1038/81137.

    Article  PubMed  CAS  Google Scholar 

  • Gorin, P. A. J. (1981). Carbon–13 nuclear magnetic resonance spectroscopy of polysaccharides. Advances in Carbohydrate Chemistry and Biochemistry, 38, 13–104. doi:10.1016/S0065-2318(08)60309-1.

    Article  CAS  Google Scholar 

  • Hatada, K., & Kitayama, T. (2004). NMR spectroscopy of polymers. Berlin: Springer.

    Google Scholar 

  • Hidalgo, F. J., & Zamora, R. (2003). Edible oil analysis by high-resolution nuclear magnetic resonance: Recent advances and future perspectives. Trends in Food Science & Technology, 14, 499–506.

    Article  CAS  Google Scholar 

  • Holmes, E., & Antti, H. (2002). Chemometric contributions to the evolution of metabonomics: Mathematical solutions to characterising and interpreting complex biological NMR spectra. Analyst (London), 127, 1549–1557. doi:10.1039/b208254n.

    Article  CAS  Google Scholar 

  • Holmes, E., Loo, R. L., Stamler, J., et al. (2008). Human metabolic phenotype diversity and its association with diet and blood pressure. Nature, 453, 396–400. doi:10.1038/nature06882.

    Article  PubMed  CAS  Google Scholar 

  • Hyberts, S. G., Heffron, G. J., Tarragona, N. G., et al. (2007). Ultrahigh-resolution (1)H-(13)C HSQC spectra of metabolite mixtures using nonlinear sampling and forward maximum entropy reconstruction. Journal of the American Chemical Society, 129, 5108–5116. doi:10.1021/ja068541x.

    Article  PubMed  CAS  Google Scholar 

  • Jeener, J., Meier, B. H., Bachmann, P., & Ernst, R. R. (1979). Investigation of exchange processes by two-dimensional NMR spectroscopy. The Journal of Chemical Physics, 71, 4546–4553. doi:10.1063/1.438208.

    Article  CAS  Google Scholar 

  • Keun, H. C., Beckonert, O., Griffin, J. L., et al. (2002). Cryogenic probe 13C NMR spectroscopy of urine for metabonomic studies. Analytical Chemistry, 74, 4588–4593. doi:10.1021/ac025691r.

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi, J., Shinozaki, K., & Hirayama, T. (2004). Stable isotope labeling of Arabidopsis thaliana for an NMR-based metabolomics approach. Plant and Cell Physiology, 45, 1099–1104. doi:10.1093/pcp/pch117.

    Article  PubMed  CAS  Google Scholar 

  • Kovacs, H., Moskau, D., & Spraul, M. (2005). Cryogenically cooled probes—a leap in NMR technology. Progress in Nuclear Magnetic Resonance Spectroscopy, 46, 131–155. doi:10.1016/j.pnmrs.2005.03.001.

    Article  CAS  Google Scholar 

  • Krawczyk, H., Gryff-Keller, A., Gradowska, W., Duran, M., & Pronicka, E. (2001). 13C NMR spectroscopy: A convenient tool for detection of argininosuccinic aciduria. Journal of Pharmaceutical and Biomedical Analysis, 26, 401–408. doi:10.1016/S0731-7085(01)00420-4.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, I. A., Schommer, S. C., Hodis, B., et al. (2007). Method for determining molar concentrations of metabolites in complex solutions from two-dimensional 1H–13C NMR spectra. Analytical Chemistry, 79, 9385–9390. doi:10.1021/ac071583z.

    Article  PubMed  CAS  Google Scholar 

  • Lindon, J. C., Holmes, E., & Nicholson, J. K. (2001). Pattern recognition methods and applications in biomedical magnetic resonance. Progress in Nuclear Magnetic Resonance Spectroscopy, 39, 1–40. doi:10.1016/S0079-6565(00)00036-4.

    Article  CAS  Google Scholar 

  • Lindon, J. C., Holmes, E., & Nicholson, J. K. (2004). Toxicological applications of magnetic resonance. Progress in Nuclear Magnetic Resonance Spectroscopy, 45, 109–143. doi:10.1016/j.pnmrs.2004.05.001.

    Article  CAS  Google Scholar 

  • Lindon, J. C., Nicholson, J. K., & Everett, J. R. (1999). In Webb, G. A. (Ed.), NMR spectroscopy of biofluids. Annual reports on NMR spectroscopy (Vol. 38, pp. 1–88). London: Academic Press.

  • Lindon, J. C., Nicholson, J. K., Holmes, S., & Everett, J. R. (2000). Metabonomics: Metabolic processes studied by NMR spectroscopy of biofluids. Concepts in Magnetic Resonance, 12, 289–320. doi:10.1002/1099-0534(2000)12:5<289::AID-CMR3>3.0.CO;2-W.

    Article  CAS  Google Scholar 

  • Lindon, J. C., Nicholson, J. K., Holmes, E., et al. (2003). Contemporary issues in toxicology the role of metabonomics in toxicology and its evaluation by the COMET project. Toxicology and Applied Pharmacology, 187, 137–146. doi:10.1016/S0041-008X(02)00079-0.

    Article  PubMed  CAS  Google Scholar 

  • Malloy, C. R., Sherry, A. D., & Jeffrey, F. M. H. (1990). Analysis of tricarboxylic acid cycle of the heart using 13C isotope isomers. The American Journal of Physiology, 259, H987–H995.

    PubMed  CAS  Google Scholar 

  • Moolenaar, S. H., Poggi-Bach, J., Engelke, U. F. H., et al. (1999). Defect in dimethylglycine dehydrogenase, a new inborn error of metabolism: NMR spectroscopy study. Clinical Chemistry, 45, 459–464.

    PubMed  CAS  Google Scholar 

  • Nicholson, J. K., Connelly, J., Lindon, J. C., & Holmes, E. (2002). Metabonomics: A platform for studying drug toxicity and gene function. Nature Reviews. Drug Discovery, 1, 153–161. doi:10.1038/nrd728.

    Article  PubMed  CAS  Google Scholar 

  • Norton, R. S., Zwick, J., & Béress, L. (1980). Natural-abundance 13C nuclear-magnetic-resonance study of toxin II from Anemonia sulcata. European Journal of Biochemistry, 113, 75–83.

    Article  PubMed  CAS  Google Scholar 

  • Plumb, R., Granger, J., Stumpf, C., Wilson, I. D., Evans, J. A., & Lenz, E. M. (2003). Metabonomic analysis of mouse urine by liquid-chromatography-time of flight mass spectrometry (LC-TOFMS): Detection of strain, diurnal and gender differences. Analyst (London), 128, 819–823. doi:10.1039/b304296k.

    Article  CAS  Google Scholar 

  • Schleucher, J., Schwendinger, M., Sattler, M., et al. (1994). A general enhancement scheme in heteronuclear multidimensional NMR employing pulsed field gradients. Journal of Biomolecular NMR, 4, 301–306. doi:10.1007/BF00175254.

    Article  PubMed  CAS  Google Scholar 

  • Shanaiah, N., Desilva, M. A., Gowda, G. A. N., Raftery, M. A., Hainline, B. E., & Raftery, D. (2007). Class selection of amino acid metabolites in body fluids using chemical derivatization and their enhanced 13C NMR. Proceedings of the National Academy of Sciences of the United States of America, 104, 11540–11544. doi:10.1073/pnas.0704449104.

    Article  PubMed  CAS  Google Scholar 

  • Shearer, J., Duggan, G., Weljie, A., Hittel, D. S., Wasserman, D. H., & Vogel, H. J. (2008). Metabolomic profiling of dietary-induced insulin resistance in the high fat-fed C57BL/6 J mouse. Diabetes, Obesity & Metabolism, 10, 950–958.

    Google Scholar 

  • Tennant, R. W. (2002). The National Center for Toxicogenomics: Using new technologies to inform mechanistic toxicology. Environmental Health Perspectives, 110, A8–A10.

    PubMed  CAS  Google Scholar 

  • Viant, M. R. (2003). Improved methods for the acquisition and interpretation of NMR metabolomic data. Biochemical and Biophysical Research Communications, 310, 943–948. doi:10.1016/j.bbrc.2003.09.092.

    Article  PubMed  CAS  Google Scholar 

  • Voehler, M. W., Collier, G., Young, J. K., Stone, M. P., & Germann, M. W. (2006). Performance of cryogenic probes as a function of ionic strength and sample tube geometry. Journal of Magnetic Resonance (San Diego, Calif.), 183, 102–109. doi:10.1016/j.jmr.2006.08.002.

    CAS  Google Scholar 

  • Wehrli, S. L., Berry, G. T., Palmieri, M., Mazur, A., Elsas, L., I. I. I., & Segal, S. (1997). Urinary galactonate in patients with galactosemia: Quantitation by nuclear magnetic resonance spectroscopy. Pediatric Research, 42, 855–861. doi:10.1203/00006450-199712000-00022.

    Article  PubMed  CAS  Google Scholar 

  • Weljie, A. M., Dowlatabadi, R., Miller, B. J., Vogel, H. J., & Jirik, F. R. (2007). An inflammatory arthritis-associated metabolite biomarker pattern revealed by 1H NMR spectroscopy. Journal of Proteome Research, 6, 3456–3464. doi:10.1021/pr070123j.

    Article  PubMed  CAS  Google Scholar 

  • Weljie, A., Newton, J., Jirik, F. R., & Vogel, H. J. (2008). Evaluating low-intensity unknown signals in quantitative proton NMR mixture analysis. Analytical Chemistry, 80, 8956–8965.

    Google Scholar 

  • Weljie, A., Newton, J., Mercier, P., Carlson, E., & Slupsky, C. (2006). Targeted profiling: Quantitative analysis of 1H NMR metabolomics data. Analytical Chemistry, 78, 4430–4442. doi:10.1021/ac060209g.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Human Metabolome Database Project, a research endeavor supported by Genome Canada. H. J. Vogel is a Scientist of the Alberta Heritage Foundation for Medical Research. We thank Dr Deane McIntyre for technical assistance and the maintenance of the NMR instruments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans J. Vogel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaykhutdinov, R.A., MacInnis, G.D., Dowlatabadi, R. et al. Quantitative analysis of metabolite concentrations in human urine samples using 13C{1H} NMR spectroscopy. Metabolomics 5, 307–317 (2009). https://doi.org/10.1007/s11306-009-0155-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-009-0155-5

Keywords

Navigation